Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chirality ; 35(12): 920-936, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37343226

RESUMO

Chirality was traditionally considered a binary property of periodic lattices and crystals. However, the classes of two-dimensional lattices modulo rigid motion form a continuous space, which was recently parametrized by three geographic-style coordinates. The four non-oblique Bravais classes of two-dimensional lattices form low-dimensional singular subspaces in the full continuous space. Now, the deviations of a lattice from its higher symmetry neighbors can be continuously quantified by real-valued distances satisfying metric axioms. This article analyzes these and newer G-chiral distances for millions of two-dimensional lattices that are extracted from thousands of available two-dimensional materials and real crystal structures in the Cambridge Structural Database.

2.
J Am Chem Soc ; 144(22): 9893-9901, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35634799

RESUMO

Mesoporous molecular crystals have potential applications in separation and catalysis, but they are rare and hard to design because many weak interactions compete during crystallization, and most molecules have an energetic preference for close packing. Here, we combine crystal structure prediction (CSP) with structural invariants to continuously qualify the similarity between predicted crystal structures for related molecules. This allows isomorphous substitution strategies, which can be unreliable for molecular crystals, to be augmented by a priori prediction, thus leveraging the power of both approaches. We used this combined approach to discover a rare example of a low-density (0.54 g cm-3) mesoporous hydrogen-bonded framework (HOF), 3D-CageHOF-1. This structure comprises an organic cage (Cage-3-NH2) that was predicted to form kinetically trapped, low-density polymorphs via CSP. Pointwise distance distribution structural invariants revealed five predicted forms of Cage-3-NH2 that are analogous to experimentally realized porous crystals of a chemically different but geometrically similar molecule, T2. More broadly, this approach overcomes the difficulties in comparing predicted molecular crystals with varying lattice parameters, thus allowing for the systematic comparison of energy-structure landscapes for chemically dissimilar molecules.

3.
IUCrJ ; 11(Pt 4): 453-463, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38805320

RESUMO

This paper was motivated by the articles `Same or different - that is the question' in CrystEngComm (July 2020) and `Change to the definition of a crystal' in the IUCr Newsletter (June 2021). Experimental approaches to crystal comparisons require rigorously defined classifications in crystallography and beyond. Since crystal structures are determined in a rigid form, their strongest equivalence in practice is rigid motion, which is a composition of translations and rotations in 3D space. Conventional representations based on reduced cells and standardizations theoretically distinguish all periodic crystals. However, all cell-based representations are inherently discontinuous under almost any atomic displacement that can arbitrarily scale up a reduced cell. Hence, comparison of millions of known structures in materials databases requires continuous distance metrics.

4.
Sci Rep ; 14(1): 10132, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698128

RESUMO

Periodic material or crystal property prediction using machine learning has grown popular in recent years as it provides a computationally efficient replacement for classical simulation methods. A crucial first step for any of these algorithms is the representation used for a periodic crystal. While similar objects like molecules and proteins have a finite number of atoms and their representation can be built based upon a finite point cloud interpretation, periodic crystals are unbounded in size, making their representation more challenging. In the present work, we adapt the Pointwise Distance Distribution (PDD), a continuous and generically complete isometry invariant for periodic point sets, as a representation for our learning algorithm. The PDD distinguished all (more than 660 thousand) periodic crystals in the Cambridge Structural Database as purely periodic sets of points without atomic types. We develop a transformer model with a modified self-attention mechanism that combines PDD with compositional information via a spatial encoding method. This model is tested on the crystals of the Materials Project and Jarvis-DFT databases and shown to produce accuracy on par with state-of-the-art methods while being several times faster in both training and prediction time.

5.
Acta Crystallogr A Found Adv ; 79(Pt 1): 1-13, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36601758

RESUMO

This paper develops geographic style maps containing two-dimensional lattices in all known periodic crystals parameterized by recent complete invariants. Motivated by rigid crystal structures, lattices are considered up to rigid motion and uniform scaling. The resulting space of two-dimensional lattices is a square with identified edges or a punctured sphere. The new continuous maps show all Bravais classes as low-dimensional subspaces, visualize hundreds of thousands of lattices of real crystal structures from the Cambridge Structural Database, and motivate the development of continuous and invariant-based crystallography.

6.
Phys Rev E ; 106(5-1): 054603, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36559448

RESUMO

Packings of regular convex polygons (n-gons) that are sufficiently dense have been studied extensively in the context of modeling physical and biological systems as well as discrete and computational geometry. Former results were mainly regarding densest lattice or double-lattice configurations. Here we consider all two-dimensional crystallographic symmetry groups (plane groups) by restricting the configuration space of the general packing problem of congruent copies of a compact subset of the two-dimensional Euclidean space to particular isomorphism classes of the discrete group of isometries. We formulate the plane group packing problem as a nonlinear constrained optimization problem. By means of the Entropic Trust Region Packing Algorithm that approximately solves this problem, we examine some known and unknown densest packings of various n-gons in all 17 plane groups and state conjectures about common symmetries of the densest plane group packings for every n-gon.

7.
Chem Sci ; 12(5): 1702-1719, 2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34163930

RESUMO

The implementation of machine learning models has brought major changes in the decision-making process for materials design. One matter of concern for the data-driven approaches is the lack of negative data from unsuccessful synthetic attempts, which might generate inherently imbalanced datasets. We propose the application of the one-class classification methodology as an effective tool for tackling these limitations on the materials design problems. This is a concept of learning based only on a well-defined class without counter examples. An extensive study on the different one-class classification algorithms is performed until the most appropriate workflow is identified for guiding the discovery of emerging materials belonging to a relatively small class, that being the weakly bound polyaromatic hydrocarbon co-crystals. The two-step approach presented in this study first trains the model using all the known molecular combinations that form this class of co-crystals extracted from the Cambridge Structural Database (1722 molecular combinations), followed by scoring possible yet unknown pairs from the ZINC15 database (21 736 possible molecular combinations). Focusing on the highest-ranking pairs predicted to have higher probability of forming co-crystals, materials discovery can be accelerated by reducing the vast molecular space and directing the synthetic efforts of chemists. Further on, using interpretability techniques a more detailed understanding of the molecular properties causing co-crystallization is sought after. The applicability of the current methodology is demonstrated with the discovery of two novel co-crystals, namely pyrene-6H-benzo[c]chromen-6-one (1) and pyrene-9,10-dicyanoanthracene (2).

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa