Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Environ Res ; 247: 118352, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38309561

RESUMO

Alizarin Red S (ARS) is commonly utilized for dyeing in textile industry. The dye represents a refractory pollutant in the aquatic environment unless properly treated. To tackle this pollutant, the applicability of chitosan-clay composite (3C) for the ARS removal from textile wastewater was studied. Characterization studies were conducted on the synthesized adsorbent using Fourier transformation infrared (FT-IR), X-ray diffraction (XRD), and energy dispersive X-ray (EDX) techniques. Optimized parameters such as adsorbent's dosage, pH, reaction time, and initial concentrations were tested in a batch system. Additionally, density functional theory (DFT) was calculated to understand the adsorption mechanism and the role of benzene rings and oxygen atoms in the ARS as electron donors. At the same initial concentration of 30 mg/L and optimized conditions of 50 mg of dose, pH 2, and 10 min of reaction time, about 86% of ARS removal was achieved using the composite. The pseudo-second-order kinetic was applicable to model a reasonable fitness of the adsorption reaction, while the Temkin model was representative to simulate the reaction with a maximum adsorption capacity of 44.39 mg/g. This result was higher than magnetic chitosan (40.12 mg/g), or pure chitosan (42.48 mg/g). With ΔH = 27.22 kJ/mol and ΔG<0, the data implied the endothermic and spontaneous nature of the adsorption process. Overall, this implies that the clay-chitosan composite is promising to remove target dye from contaminated wastewater.


Assuntos
Antraquinonas , Quitosana , Poluentes Ambientais , Poluentes Químicos da Água , Águas Residuárias , Quitosana/química , Argila/química , Espectroscopia de Infravermelho com Transformada de Fourier , Adsorção , Cinética , Concentração de Íons de Hidrogênio , Termodinâmica
2.
Environ Res ; 255: 119089, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38788787

RESUMO

Water pollution due to dyes in the textile industry is a serious environmental problem. During the finishing stage, Congo red (CR) dye, water-soluble, is released into wastewater, polluting the water body. This study explores the effectiveness of utilizing a composite composed of Safi raw clay and chitosan to remove an anionic dye from synthetic wastewater. The chitosan was extracted from crab shells. Its removal performance was compared to that of natural clay. Both the composite and raw clay were used to remove target pollutant. The effects of the chitosan load in the composite, size particles, initial dye concentration, contact time, pH, and temperature on the dye's elimination were tested in batch modes. The composite with 30% (w/w) of chitosan exhibited the highest dye removal. At pH 2, an adsorption capacity of 84.74 mg/g was achieved, indicating that the grafting of the polymer onto clay surface enhances its efficacity and stability in acidic environments. This finding was supported by characterization data obtained from X-ray diffraction (XRD), scanning electron microscopy (SEM), dispersive X-ray spectroscopy (EDX), and Fourier transform infrared (FT-IR) analyses. Under optimized conditions of 20 mg dose, pH 2, 30 min of reaction time, and 20 mg/L of dye concentration, about 92% of dye removal was achieved. The Langmuir isotherm model represents dye adsorption by the composite, while dye removal was controlled by pseudo-second-order model. Thermodynamic data of the adsorption (ΔH = +8.82 kJ/mol; ΔG <0) suggested that the dye adsorption was spontaneous and endothermic. The findings provide insights into the dye elimination by the adsorbent, indicating that the removal occurred via attractive colombic forces, as confirmed by density functional theory (DFT) analysis. Overall, the composite of natural clays and chitosan waste is a promising and innovative adsorbent for treating wastewater containing recalcitrant dyes.


Assuntos
Quitosana , Argila , Corantes , Vermelho Congo , Poluentes Químicos da Água , Vermelho Congo/química , Quitosana/química , Argila/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Corantes/química , Adsorção , Águas Residuárias/química , Purificação da Água/métodos , Silicatos de Alumínio/química , Concentração de Íons de Hidrogênio
3.
J Environ Manage ; 353: 120287, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38335595

RESUMO

Textile wastewater laden with dyes has emerged as a source of water pollution. This possesses a challenge in its effective treatment using a single functional material. In respond to this technological constraint, this work presents multifunctional cotton fabrics (CFs) within a single, streamlined preparation process. This approach utilizes the adherence of Ag NPs (nanoparticles) using Si binder on the surface of CFs, resulting in Ag-coated CFs through a pad dry method. The prepared samples were characterized using scanning electron microscope-energy dispersive X-ray electroscopy (SEM-EDS), thermal gravimetric analysis (TGA), Fourier transformation infrared (FT-IR). It was found that the FT-IR spectra of Ag NPs-coated CFs had peaks appear at 3400, 2900, and 1200 cm-1, implying the stretching vibrations of O-H, C-H, and C-O, respectively. Based on the EDX analysis, the presence of C, O, and Ag related to the coated CFs were detected. After coating the CFs with varying concentrations of Ag NPs (1%, 2% and 3% (w/w)), they were used to remove dyes. Under the same concentration of 10 mg/L and optimized pH 7.5 and 2 h of reaction time, 3% (w/w) Ag-coated CFs exhibited a substantial MB degradation of 98 %, while removing 95% of methyl orange, 85% of rhodamine B, and 96% of Congo red, respectively, following 2 h of Vis exposure. Ag NPs had a strong absorption at 420 nm with 2.51 eV of energy band gap. Under UV irradiation, electrons excited and produced free radicals that promoted dyes photodegradation. The oxidation by-products included p-dihydroxybenzene and succinic acid. Spent Ag-coated CFs attained 98% of regeneration efficiency. The utilization of Ag-coated CFs as a photocatalyst facilitated treated effluents to meet the required discharge standard of lower than 1 mg/L mandated by national legislation. The integration of multifunctional CFs in the treatment system presents a new option for tackling water pollution due to dyes.


Assuntos
Corantes , Raios Ultravioleta , Corantes/química , Espectroscopia de Infravermelho com Transformada de Fourier , Luz Solar , Água/química
4.
J Environ Manage ; 351: 119879, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38157574

RESUMO

In recent years, food waste has been a global concern that contributes to climate change. To deal with the rising impacts of climate change, in Hong Kong, food waste is converted into electricity in the framework of low-carbon approach. This work provides an overview of the conversion of food waste into electricity to achieve carbon neutrality. The production of methane and electricity from waste-to-energy (WTE) conversion are determined. Potential income from its sale and environmental benefits are also assessed quantitatively and qualitatively. It was found that the electricity generation from the food waste could reach 4.33 × 109 kWh annually, avoiding equivalent electricity charge worth USD 3.46 × 109 annually (based on US' 8/kWh). An equivalent CO2 mitigation of 9.9 × 108 kg annually was attained. The revenue from its electricity sale in market was USD 1.44×109 in the 1st year and USD 4.24 ×109 in the 15th year, respectively, according to the projected CH4 and electricity generation. The modelling study indicated that the electricity production is 0.8 kWh/kg of landfilled waste. The food waste could produce electricity as low as US' 8 per kW ∙ h. In spite of its promising results, there are techno-economic bottlenecks in commercial scale production and its application at comparable costs to conventional fossil fuels. Issues such as high GHG emissions and high production costs have been determined to be resolved later. Overall, this work not only leads to GHG avoidance, but also diversifies energy supply in providing power for homes in the future.


Assuntos
Eliminação de Resíduos , Mudança Climática , Perda e Desperdício de Alimentos , Hong Kong , Alimentos , Carbono , Eletricidade , China
5.
J Environ Manage ; 354: 120414, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38412730

RESUMO

Inadequate landfill management poses risks to the environment and human health, necessitating action. Poorly designed and operated landfills release harmful gases, contaminate water, and deplete resources. Aligning landfill management with the Sustainable Development Goals (SDGs) reveals its crucial role in achieving various targets. Urgent transformation of landfill practices is necessary to address challenges like climate change, carbon neutrality, food security, and resource recovery. The scientific community recognizes landfill management's impact on climate change, evidenced by in over 191 published articles (1998-2023). This article presents emerging solutions for sustainable landfill management, including physico-chemical, oxidation, and biological treatments. Each technology is evaluated for practical applications. The article emphasizes landfill management's global significance in pursuing carbon neutrality, prioritizing resource recovery over end-of-pipe treatments. It is important to note that minimizing water, chemical, and energy inputs in nutrient recovery is crucial for achieving carbon neutrality by 2050. Water reuse, energy recovery, and material selection during manufacturing are vital. The potential of water technologies for recovering macro-nutrients from landfill leachate is explored, considering feasibility factors. Integrated waste management approaches, such as recycling and composting, reduce waste and minimize environmental impact. It is conclusively evident that the water technologies not only facilitate the purification of leachate but also enable the recovery of valuable substances such as ammonium, heavy metals, nutrients, and salts. This recovery process holds economic benefits, while the conversion of CH4 and hydrogen into bioenergy and power generation through microbial fuel cells further enhances its potential. Future research should focus on sustainable and cost-effective treatment technologies for landfill leachate. Improving landfill management can mitigate the adverse environmental and health effects of inadequate waste disposal.


Assuntos
Eliminação de Resíduos , Gerenciamento de Resíduos , Poluentes Químicos da Água , Humanos , Poluentes Químicos da Água/química , Carbono , Instalações de Eliminação de Resíduos , Água , Resíduos Sólidos
6.
Environ Res ; 238(Pt 1): 117164, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37722579

RESUMO

Arsenic (As) contamination poses a significant threat to human health, ecosystems, and agriculture, with levels ranging from 12 to 75% attributed to mine waste and stream sediments. This naturally element is abundant in Earth's crust and gets released into the environment through mining and rock processing, causing ≈363 million people to depend on As-contaminated groundwater. To combat this issue, introducing a sustainable hydrochar system has achieved a remarkable removal efficiency of over 92% for arsenic through adsorption. This comprehensive review presents an overview of As contamination in the environment, with a specific focus on its impact on drinking water and wastewater. It delves into the far-reaching effects of As on human health, ecosystems, aquatic systems, and agriculture, while also exploring the effectiveness of existing As treatment systems. Additionally, the study examines the potential of hydrochar as an efficient adsorbent for As removal from water/wastewater, along with other relevant adsorbents and biomass-based preparations of hydrochar. Notably, the fusion of hydrochar with nanoparticle-centric approaches presents a highly promising and environmentally friendly solution for achieving the removal of As from wastewater, exceeding >99% efficiency. This innovative approach holds immense potential for advancing the realms of green chemistry and environmental restoration. Various challenges associated with As contamination and treatment are highlighted, and proposed solutions are discussed. The review emphasizes the urgent need to advance treatment technologies, improve monitoring methods, and enhance regulatory frameworks. Looking outlook, the article underscores the importance of fostering research efforts, raising public awareness, and fostering interdisciplinary collaboration to address this critical environmental issue. Such efforts are vital for UN Sustainable Development Goals, especially clean water and sanitation (Goal 6) and climate action (Goal 13), crucial for global sustainability.


Assuntos
Arsênio , Recuperação e Remediação Ambiental , Poluentes Químicos da Água , Purificação da Água , Humanos , Águas Residuárias , Arsênio/análise , Ecossistema , Água , Poluentes Químicos da Água/análise , Adsorção , Purificação da Água/métodos
7.
J Environ Manage ; 329: 117047, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36563449

RESUMO

This study investigated physico-chemical interactions among Cu(II), biogenic materials, and Fe2O3 in a continuous-flow biofilm reactor system under a well-controlled environment. The effects of Fe2O3 and bacterial biofilms on the distribution of Cu(II) in a simulated aquatic environment were studied. To control biological and abiotic elements in the marine environment, a biofilm reactor was designed to understand the metal speciation of Cu(II) and its distribution. The reactor consisted of a biofilm chamber equipped with glass slides for biofilms attachment. Due to its ability to grow as biofilm in the medium, Pseudomonas atlantica was cultivated to adsorb trace Cu(II) to attached and suspended cells. It was found that biofilms with 170-285 mequiv chemical oxygen demand (COD) concentration/m2 of total oxidizable materials accelerated the Cu(II) adsorption to the surface of the reactor significantly by a factor of five. A significant inhibition to the bacterial growth took place (p ≤ 0.05; t-test) when Cu(II) concentration was higher than 0.5 mg/L. In the absence of Cu(II), bacterial cells grew normally to 0.075 of optical density (OD). However, at the Cu(II) concentration of 0.2 mg/L, the cells grew to a lower OD of 0.58. The presence of glycine and EDTA substantially reduced the toxicity of Cu(II) on bacterial growth (p ≤ 0.05; paired t-test). Their complexation with Cu(II) rendered the metal ions less available to bacterial cells. This implies that the Fe2O3 and bacterial biofilm affected Cu(II) distribution and speciation in the aquatic environment.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Metais Pesados/análise , Sedimentos Geológicos , Rios , Estuários , Estudos de Viabilidade , Poluentes Químicos da Água/análise , Monitoramento Ambiental , China , Biofilmes
8.
J Environ Manage ; 347: 119129, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37778073

RESUMO

Buffing dust, generated from tannery industries, is a source of air pollution in Pakistan. Valorization of the waste into another useful material is important to deal with the environmental pollution, while reducing waste disposal costs in landfills. To demonstrate its technological strength, this work fabricates a thermal insulation material made of plaster of Paris and the buffing dust (from tanning waste) in the form of a composite with superior mechanical properties and low thermal conductivity. Buffing dust with concentrations ranging from 5 to 20% (w/w) were loaded in the composite. The samples synthesized were made slurry of plaster of Paris, buffing dust, and water at ambient temperature. The physico-mechanical properties of composite were analyzed. It was found that the composite had better thermal insulation properties than the panels of the plaster of Paris. Its thermal conductivity was reduced to 15% after adding buffing dust (20% w/w). All the materials had physico-chemical properties like tensile strength (0.02 MPa and 0.06 MPa), density (700-400 kg/m3), water absorption (5.2-8.6%) and thermal conductivity (0.17000-0.09218 W/m-K). Thermogravimetric analysis showed that the material was thermally stable at temperatures ranging from 145 to 177 °C, while FT-IR results revealed that the composite contained O-H, N-H, and CO functional groups. SEM analysis displayed that the composite's homogeneity was reduced with low voids due to buffing dust addition, while EDX analysis showed that the composite contained 23.62% of S, 26.76% of Ca, 49.2% of O and 0.42% of C. This implies that buffing dust could be recycled to manufacture heat insulation materials for construction sector to reduce air pollution, while minimizing energy consumption. By integrating the buffing dust from tanning waste and the plaster of Paris as a composite for construction sector, this work promotes the recycling of unused waste, while saving public funds. Instead of paying landfill fees and polluting soil, the waste may be recycled at lower cost, while reducing environmental damage.


Assuntos
Indústria da Construção , Sulfato de Cálcio , Poeira , Espectroscopia de Infravermelho com Transformada de Fourier , Água
9.
J Environ Manage ; 332: 117429, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36773474

RESUMO

Biochar, derived from unused biomass, is widely considered for its potential to deal with climate change problems. Global interest in biochar is attributed to its ability to sequester carbon in soil and to remediate aquatic environment from water pollution. As soil conditioner and/or adsorbent, biochar offers opportunity through a circular economy (CE) paradigm. While energy transition continues, progress toward low-emissions materials accelerates their advance towards net-zero emissions. However, none of existing works addresses CE-based biochar management to achieve carbon neutrality. To reflect its novelty, this work provides a critical overview of challenges and opportunities for biochar to promote CE and carbon neutrality. This article also offers seminal perspectives about strengthening biomass management through CE and resource recovery paradigms, while exploring how the unused biomass can promote net zero emissions in its applications. By consolidating scattered knowledge in the body of literature into one place, this work uncovers new research directions to close the loops by implementing the circularity of biomass resources in various fields. It is conclusive from a literature survey of 113 articles (2003-2023) that biomass conversion into biochar can promote net zero emissions and CE in the framework of the UN Sustainable Development Goals (SDGs). Depending on their physico-chemical properties, biochar can become a suitable feedstock for CE. Biochar application as soil enrichment offsets 12% of CO2 emissions by land use annually. Adding biochar to soil can improve its health and agricultural productivity, while minimizing about 1/8 of CO2 emissions. Biochar can also sequester CO2 in the long-term and prevent the release of carbon back into the atmosphere after its decomposition. This practice could sequester 2.5 gigatons (Gt) of CO2 annually. With the global biochar market reaching USD 368.85 million by 2028, this work facilitates biochar with its versatile characteristics to promote carbon neutrality and CE applications.


Assuntos
Dióxido de Carbono , Carbono , Dióxido de Carbono/análise , Carvão Vegetal/química , Solo/química , Agricultura
10.
J Environ Manage ; 345: 118772, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37597373

RESUMO

This work investigates the use of novel BiOI@ZIF-8 nanocomposite for the removal of acetaminophen (Ace) from synthetic wastewater. The samples were analyzed using FTIR, XRD, XPS, DRS, PL, FESEM-EDS, and ESR techniques. The effects of the loading capacity of ZIF-8 on the photocatalytic oxidation performance of bismuth oxyiodide (BiOI) were studied. The photocatalytic degradation of Ace was maximized by optimizing pH, reaction time and the amount of photocatalyst. On this basis, the removal mechanisms of the target pollutant by the nanocomposite and its photodegradation pathways were elucidated. Under optimized conditions of 1 g/L of composite, pH 6.8, and 4 h of reaction time, it was found that the BiOI@ZIF-8 (w/w = 1:0.01) nanocomposite exhibited the highest Ace removal (94%), as compared to that of other loading ratios at the same Ace concentration of 25 mg/L. Although this result was encouraging, the treated wastewater still did not satisfy the required statutory of 0.2 mg/L. It is suggested that the further biological processes need to be adopted to complement Ace removal in the samples. To sustain its economic viability for wastewater treatment, the spent composite still could be reused for consecutive five cycles with 82% of regeneration efficiency. Overall, this series of work shows that the nanocomposite was a promising photocatalyst for Ace removal from wastewater samples.


Assuntos
Acetaminofen , Nanocompostos , Bismuto/química , Águas Residuárias , Raios Ultravioleta
11.
J Environ Manage ; 338: 117765, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-36965421

RESUMO

Digitalization and sustainability have been considered as critical elements in tackling a growing problem of solid waste in the framework of circular economy (CE). Although digitalization can enhance time-efficiency and/or cost-efficiency, their end-results do not always lead to sustainability. So far, the literatures still lack of a holistic view in understanding the development trends and key roles of digitalization in waste recycling industry to benefit stakeholders and to protect the environment. To bridge this knowledge gap, this work systematically investigates how leveraging digitalization in waste recycling industry could address these research questions: (1) What are the key problems of solid waste recycling? (2) How the trends of digitalization in waste management could benefit a CE? (3) How digitalization could strengthen waste recycling industry in a post-pandemic era? While digitalization boosts material flows in a CE, it is evident that utilizing digital solutions to strengthen waste recycling business could reinforce a resource-efficient, low-carbon, and a CE. In the Industry 4.0 era, digitalization can add 15% (about USD 15.7 trillion) to global economy by 2030. As digitalization grows, making the waste sector shift to a CE could save between 30% and 35% of municipalities' waste management budget. With digitalization, a cost reduction of 3.6% and a revenue increase of 4.1% are projected annually. This would contribute to USD 493 billion in an increasing revenue yearly in the next decade. As digitalization enables tasks to be completed shortly with less manpower, this could save USD 421 billion annually for the next decade. With respect to environmental impacts, digitalization in the waste sector could reduce global CO2 emissions by 15% by 2030 through technological solutions. Overall, this work suggests that digitalization in the waste sector contributes net-zero emission to a digital economy, while transitioning to a sustainable world as its social impacts.


Assuntos
Resíduos Sólidos , Gerenciamento de Resíduos , Gerenciamento de Resíduos/métodos , Meio Ambiente , Cidades , Indústrias , Reciclagem
12.
J Environ Manage ; 346: 118971, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37729832

RESUMO

Microplastic pollution is a serious environmental problem that affects both aquatic and terrestrial ecosystems. Small particles with size of less than 5 mm, known as microplastics (MPs), persist in the environment and pose serious threats to various species from micro-organisms to humans. However, terrestrial environment has received less attention than the aquatic environment, despite being a major source of MPs that eventually reaches water body. To reflect its novelty, this work aims at providing a comprehensive overview of the current state of MPs pollution in the global environment and various solutions to address MP pollution by integrating applied technology, policy instruments, and legislation. This review critically evaluates and compares the existing technologies for MPs detection, removal, and degradation, and a variety of policy instruments and legislation that can support the prevention and management of MPs pollution scientifically. Furthermore, this review identifies the gaps and challenges in addressing the complex and diverse nature of MPs and calls for joint actions and collaboration from stakeholders to contain MPs. As water pollution by MPs is complex, managing it effectively requires their responses through the utilization of technology, policy instruments, and legislation. It is evident from a literature survey of 228 published articles (1961-2023) that existing water technologies are promising to remove MPs pollution. Membrane bioreactors and ultrafiltration achieved 90% of MPs removal, while magnetic separation was effective at extracting 88% of target MPs from wastewater. In biological process, one kg of wax worms could consume about 80 g of plastic/day. This means that 100 kg of wax worms can eat about 8 kg of plastic daily, or about 2.9 tons of plastic annually. Overall, the integration of technology, policy instrument, and legislation is crucial to deal with the MPs issues.

13.
Environ Res ; 214(Pt 4): 114070, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35988827

RESUMO

This work tests the technical applicability of sewage sludge and isolated dead cells of Aeromasss hydrophyla and Branhamella spp for the elimination of inorganic pollutants such as Zn(II), Pb(II), Cd(II), and/or Cu(II) using synthetic wastewater with their initial concentrations of 100 mg/L, respectively. The sludge samples were collected from local sewage treatment plants. The effects of dose and pH on heavy metals removal were evaluated in batch studies and their removal performances were compared to those of previous studies. Both the Freundlich and the Langmuir models were plotted to study their biosorption using activated sludge and the bacteria. Isotherm data, resulting from the batch studies, were compared to the modeling results of Geochem. It was evident that the activated sludge could achieve 99% of Zn(II), Cd(II), Cu(II) and Pb(II) removal with 100 mg/L of concentration at pH 6.0 and 3 g/L of dose. Under the same conditions, 97% of Cd(II), Cu(II) and/or Pb(II) was removed by Aeromasss hydrophyla and Branhamella spp, as indicated by their adsorption capacities (activated sludge: 99.07 mg Pb2+/g; dewatered sludge: 57.15 mg Pb2+/g; digested sludge: 83.58 mg Pb2+/g; 24.47 mg Cd2+/g; Aeromasss hydrophylla: 71.91 mg Pb2+/g; Branhamella spp: 37.52 mg Cu2+/g). Of the four heavy metals studied, Pb(II) had the highest metal adsorption capacity for all adsorbents studied (Pb2+>Cu2+> Cd2+>Zn2+). The modeling results of the Geochem fitted well with the isotherm data of the batch studies at varying concentrations from 20 to 100 mg/L. The thermodynamic constant at pH 4 were comparable to those obtained from previous works. This indicates a reliable prediction over varying metal concentrations and pHs of the batch studies. In spite of the promising results, the treated effluents still could not meet the required effluent limits set by local legislation. Therefore, it is necessary to subsequently treat the samples using biological processes such as activated sludge.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Adsorção , Cádmio , Concentração de Íons de Hidrogênio , Cinética , Chumbo , Esgotos , Água
14.
J Environ Manage ; 301: 113882, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34638040

RESUMO

Due to its increasing demands for fossil fuels, Indonesia needs an alternative energy to diversify its energy supply. Landfill gas (LFG), which key component is methane (CH4), has become one of the most attractive options to sustain its continued economic development. This exploratory study seeks to demonstrate the added value of landfilled municipal solid waste (MSW) in generating sustainable energy, resulting from CH4 emissions in the Bantargebang landfill (Jakarta). The power generation capacity of a waste-to-energy (WTE) plant based on a mathematical modeling was investigated. This article critically evaluated the production of electricity and potential income from its sale in the market. The project's environmental impact assessment and its socio-economic and environmental benefits in terms of quantitative and qualitative aspects were discussed. It was found that the emitted CH4 from the landfill could be reduced by 25,000 Mt annually, while its electricity generation could reach one million kW â‹…h annually, savings on equivalent electricity charge worth US$ 112 million/year (based on US' 8/kW ⋅ h). An equivalent CO2 mitigation of 3.4 × 106 Mt/year was obtained. The income from its power sale were US$ 1.2 ×106 in the 1st year and 7.7 ×107US$ in the 15th year, respectively, based on the projected CH4 and power generation. The modeling study on the Bantargebang landfill using the LFG extraction data indicated that the LFG production ranged from 0.05 to 0.40 m3 per kg of the landfilled MSW. The LFG could generate electricity as low as US' 8 per kW ⋅ h. With respect to the implications of this study, the revenue not only defrays the cost of landfill's operations and maintenance (O&M), but also provides an incentive and means to further improve its design and operations. Overall, this work not only leads to a diversification of primary energy, but also improves environmental protection and the living standard of the people surrounding the plant.


Assuntos
Gases de Efeito Estufa , Eliminação de Resíduos , Eletricidade , Humanos , Indonésia , Metano/análise , Resíduos Sólidos/análise , Instalações de Eliminação de Resíduos
15.
J Environ Manage ; 308: 114556, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35124308

RESUMO

Oilfield produced water (OPW) is one of the most important by-products, resulting from oil and gas exploration. The water contains a complex mixture of organic and inorganic compounds such as grease, dissolved salt, heavy metals as well as dissolved and dispersed oils, which can be toxic to the environment and public health. This article critically reviews the complex properties of OPW and various technologies for its treatment. They include the physico-chemical treatment process, biological treatment process, and physical treatment process. Their technological strengths and bottlenecks as well as strategies to mitigate their bottlenecks are elaborated. A particular focus is placed on membrane technologies. Finally, further research direction, challenges, and perspectives of treatment technologies for OPW are discussed. It is conclusively evident from 262 published studies (1965-2021) that no single treatment method is highly effective for OPW treatment as a stand-alone process however, conventional membrane-based technologies are frequently used for the treatment of OPW with the ultrafiltration (UF) process being the most used for oil rejection form OPW and oily waste water. After membrane treatment, treated effluents of the OPW could be reused for irrigation, habitant and wildlife watering, microalgae production, and livestock watering. Overall, this implies that target pollutants in the OPW samples could be removed efficiently for subsequent use, despite its complex properties. In general, it is however important to note that feed quality, desired quality of effluent, cost-effectiveness, simplicity of process are key determinants in choosing the most suitable treatment process for OPW treatment.


Assuntos
Campos de Petróleo e Gás , Purificação da Água , Animais , Gado , Ultrafiltração , Águas Residuárias/análise , Purificação da Água/métodos
16.
J Environ Manage ; 286: 112246, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33667817

RESUMO

This study tested the technical feasibility of pyrite and/or persulfate oxidation system for arsenic (As) removal from aqueous solutions. The effects of persulfate on As removal by the pyrite in the integrated treatment were also investigated. Prior to the persulfate addition into the reaction system, the physico-chemical interactions between As and the pyrite alone in aqueous solutions were explored in batch studies. The adsorption mechanisms of As by the adsorbent were also presented. At the same As concentration of 5 mg/L, it was found that As(III) attained a longer equilibrium time (8 h) than As(V) (2 h), while the pyrite worked effectively at pH ranging from 6 to 11. At optimum conditions (0.25 g/L of pyrite, pH 8.0 and 5 mg/L of As(III) concentration), the addition of persulfate (0.5 mM) into the reaction promoted a complete removal of arsenic from the solutions. Consequently, this enabled the treated effluents to meet the arsenic maximum contaminant limit (MCL) of <10 µg/L according to the World Health Organization (WHO)'s requirements. The redox mechanisms, which involved electron transfer from the S22- of the pyrite to Fe3+, supply Fe2+ for persulfate decomposition, oxidizing As(III) to As(V). The sulfur species played roles in the redox cycle of the Fe3+/Fe2+ of the pyrite by giving its electrons, while the As(III) oxidation to As(V) was attributed to the pyrite. Overall, this work reveals the applicability of the pyrite as an adsorbent for water treatment and the importance of persulfate addition to promote a complete As removal from aqueous solutions.


Assuntos
Arsênio , Poluentes Químicos da Água , Purificação da Água , Adsorção , Arsênio/análise , Concentração de Íons de Hidrogênio , Oxirredução , Água , Poluentes Químicos da Água/análise
17.
J Environ Manage ; 287: 112265, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33730674

RESUMO

This study investigated the feasibility of integrated ammonium stripping and/or coconut shell waste-based activated carbon (CSWAC) adsorption in treating leachate samples. To valorize unused biomass for water treatment application, the adsorbent originated from coconut shell waste. To enhance its performance for target pollutants, the adsorbent was pretreated with ozone and NaOH. The effects of pH, temperature, and airflow rate on the removal of ammoniacal nitrogen (NH3-N) and refractory pollutants were studied during stripping alone. The removal performances of refractory compounds in this study were compared to those of other treatments previously reported. To contribute new knowledge to the field of study, perspectives on nutrients removal and recovery like phosphorus and nitrogen are presented. It was found that the ammonium stripping and adsorption treatment using the ozonated CSWAC attained an almost complete removal (99%) of NH3-N and 90% of COD with initial NH3-N and COD concentrations of 2500 mg/L and 20,000 mg/L, respectively, at optimized conditions. With the COD of treated effluents higher than 200 mg/L, the combined treatments were not satisfactory enough to remove target refractory compounds. Therefore, further biological processes are required to complete their biodegradation to meet the effluent limit set by environmental legislation. As this work has contributed to resource recovery as the driving force of landfill management, it is important to note the investment and operational expenses, engineering applicability of the technologies, and their environmental concerns and benefits. If properly managed, nutrient recovery from waste streams offers environmental and socio-economic benefits that would improve public health and create jobs for the local community.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Biodegradação Ambiental , Nitrogênio , Nutrientes , Poluentes Químicos da Água/análise
18.
Molecules ; 26(5)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33652854

RESUMO

(2E,6E)-2,6-bis-(4-hydroxy-3-methoxybenzylidene)-cyclohexanone (BHMC) is a synthetic curcumin analogue, which has been reported to possess anti-tumor, anti-metastatic, and anti-invasion properties on estrogen receptor (ER) negative breast cancer cells in vitro and in vivo. However, the cytotoxic effects of BHMC on ER positive breast cancer cells were not widely reported. This study was aimed to investigate the cytotoxic potential of BHMC on MCF-7 cells using cell viability, cell cycle, and apoptotic assays. Besides, microarray and quantitative polymerase chain reaction (qPCR) were performed to identify the list of miRNAs and genes, which could be dysregulated following BHMC treatment. The current study discovered that BHMC exhibits selective cytotoxic effects on ER positive MCF-7 cells as compared to ER negative MDA-MB-231 cells and normal breast cells, MCF-10A. BHMC was shown to promote G2/M cell cycle arrest and apoptosis in MCF-7 cells. Microarray and qPCR analysis demonstrated that BHMC treatment would upregulate several miRNAs like miR-3195 and miR-30a-3p and downregulate miRNAs such as miR-6813-5p and miR-6132 in MCF-7 cells. Besides, BHMC administration was also found to downregulate few tumor-promoting genes like VEGF and SNAIL in MCF-7. In conclusion, BHMC induced apoptosis in the MCF-7 cells by altering the expressions of apoptotic-regulating miRNAs and associated genes.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , MicroRNAs/genética , Antineoplásicos/farmacologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Curcumina/análogos & derivados , Curcumina/farmacologia , Cicloexanonas/farmacologia , Feminino , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7
19.
J Clean Prod ; 284: 124775, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33106733

RESUMO

Over the past years, Indonesia, the world's fourth most populous country, has confronted environmental problems due to uncontrolled generation of municipal solid waste (MSW). While the integrated solid waste management (ISWM) represents a critical strategy for Indonesia to control its production, it is also recognized that economic approaches also need to be promoted to address the waste problem concertedly. In this case study, empirical approaches are developed to understand how a volume-based waste fee could be incorporated into MSW collection services and how to apply a zero-waste approach in Indonesia by adapting resource recovery initiatives, adapted from Germany's mature experiences in integrating the CE paradigm into the latter's MSWM practices. Currently, Sukunan village (Yogyakarta, Indonesia) promotes waste reduction at sources in the framework of community-based solid waste management (CBSWM) by mobilizing the local community for waste separation (organic and non-organic) and waste recycling. As a result, about 0.2 million Mt of CO2-eq emissions was avoided annually from local landfills. The economic benefits of recycling activities by the village's community also resulted in 30% reduction of the waste generated. This CBSWM scheme not only saves the government budget on waste collection, transport and disposal, but also extends the lifetime of local landfills as the final disposal sites. By integrating the CE paradigm into its MSWM practices through the implementation of economic instruments and adherence to the rule of law in the same way as Germany does, Indonesia could make positive changes to its environmental policy and regulation of MSW. A sound MSWM in Indonesia could play important roles in promoting the effectiveness of urban development with resource recovery approaches to facilitate its transition towards a CE nationwide in the long-term.

20.
J Environ Manage ; 270: 110839, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32721303

RESUMO

We aim at fabricating a ternary magnetic recyclable Bi2WO6/BiOI@Fe3O4 composite that could be applied for photodegradation of tetracycline (TC) from synthetic wastewater. To identify any changes with respect to the composite's morphology and crystal structure properties, ΧRD, FTIR, FESEM-EDS, PL and VSM analyses are carried out. The effects of Fe3O4 loading ratio on the Bi2WO6/BiOI for TC photodegradation are evaluated, while operational parameters such as pH, reaction time, TC concentration, and photocatalyst's dose are optimized. Removal mechanisms of the TC by the composite and its photodegradation pathways are elaborated. With respect to its performance, under the same optimized conditions (1 g/L of dose; 5 mg/L of TC; pH 7; 3 h of reaction time), the Bi2WO6/BiOI@5%Fe3O4 composite has the highest TC removal (97%), as compared to the Bi2WO6 (63%). After being saturated, the spent photocatalyst could be magnetically separated from solution for subsequent use. In spite of three consecutive cycles with 71% of efficiency, the spent composite still has reasonable photocatalytic activities for reuse. Overall, this suggests that the composite is a promising photocatalyst for TC removal from aqueous solutions.


Assuntos
Antibacterianos , Tetraciclina , Fenômenos Magnéticos , Magnetismo , Fotólise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa