Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Jpn Acad Ser B Phys Biol Sci ; 91(10): 560-76, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26666306

RESUMO

This study focuses on the structure and function of the primary sensory neurons that innervate vibrissal follicles in the rat. Both the peripheral and central terminations, as well as their firing properties were identified using intracellular labelling and recording in trigeminal ganglia in vivo. Fifty-one labelled neurons terminating peripherally, as club-like, Merkel, lanceolate, reticular or spiny endings were identified by their morphology. All neurons responded robustly to air puff stimulation applied to the vibrissal skin. Neurons with club-like endings responded with the highest firing rates; their peripheral processes rarely branched between the cell body and their terminal tips. The central branches of these neurons displayed abundant collaterals terminating within all trigeminal nuclei. Analyses of three-dimensional reconstructions reveal a palisade arrangement of club-like endings bound to the ringwulst by collagen fibers. Our morphological findings suggest that neurons with club-like endings sense mechanical aspects related to the movement of the ringwulst and convey this information to all trigeminal nuclei in the brainstem.


Assuntos
Mecanorreceptores/citologia , Gânglio Trigeminal/citologia , Vibrissas/fisiologia , Animais , Fenômenos Eletrofisiológicos , Imageamento Tridimensional , Espaço Intracelular/metabolismo , Masculino , Ratos , Ratos Wistar , Gânglio Trigeminal/fisiologia
2.
Sci Rep ; 12(1): 11326, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35790869

RESUMO

Epithelial folding is a universal biological phenomenon in morphogenesis, typical examples being brain gyri, villi of the intestinal tract, and imaginal discs in invertebrates. During epithelial morphogenesis, the physical constraints imposed by the surrounding microenvironment on epithelial tissue play critical roles in folding morphology. In this study, we focused on the asymmetry of the environmental constraints sandwiching the epithelial sheet and introduced the degree of asymmetry, which indicates whether the basal or apical side of the epithelium is closer to the constraint wall. Then, we investigated the relationship between the degree of asymmetry and epithelial folding morphology using three-dimensional vertex simulations. The results show that the folding patterns of the epithelial sheets change from spot patterns to labyrinth patterns and then to hole patterns as the degree of asymmetry changes. Furthermore, we examined the pattern formation in terms of the equation of out-of-plane displacement of the sheet derived from the mechanical energy functional.


Assuntos
Discos Imaginais , Modelos Biológicos , Animais , Epitélio , Mucosa Intestinal , Morfogênese
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa