Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 33(2): 2372-2387, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30277819

RESUMO

NF-E2-related factor 2 (NRF2) transcription factor has a fundamental role in cell homeostasis maintenance as one of the master regulators of oxidative and electrophilic stress responses. Previous studies have shown that a regulatory connection exists between NRF2 and autophagy during reactive oxygen species-generated oxidative stress. The aim of the present study was to investigate how autophagy is turned off during prolonged oxidative stress, to avoid overeating and destruction of essential cellular components. AMPK is a key cellular energy sensor highly conserved in eukaryotic organisms, and it has an essential role in autophagy activation at various stress events. Here the role of human AMPK and its Caenorhabditis elegans counterpart AAK-2 was explored upon oxidative stress. We investigated the regulatory connection between NRF2 and AMPK during oxidative stress induced by tert-butyl hydroperoxide (TBHP) in HEK293T cells and C. elegans. Putative conserved NRF2/protein skinhead-1 binding sites were found in AMPK/aak-2 genes by in silico analysis and were later confirmed experimentally by using EMSA. After addition of TBHP, NRF2 and AMPK showed a quick activation; AMPK was later down-regulated, however, while NRF2 level remained high. Autophagosome formation and Unc-51-like autophagy activating kinase 1 phosphorylation were initially stimulated, but they returned to basal values after 4 h of TBHP treatment. The silencing of NRF2 resulted in a constant activation of AMPK leading to hyperactivation of autophagy during oxidative stress. We observed the same effects in C. elegans demonstrating the conservation of this self-defense mechanism to save cells from hyperactivated autophagy upon prolonged oxidative stress. We conclude that NRF2 negatively regulates autophagy through delayed down-regulation of the expression of AMPK upon prolonged oxidative stress. This regulatory connection between NRF2 and AMPK may have an important role in understanding how autophagy is regulated in chronic human morbidities characterized by oxidative stress, such as neurodegenerative diseases, certain cancer types, and in metabolic diseases.-Kosztelnik, M., Kurucz, A., Papp, D., Jones, E., Sigmond, T., Barna, J., Traka, M. H., Lorincz, T., Szarka, A., Banhegyi, G., Vellai, T., Korcsmaros, T., Kapuy, O. Suppression of AMPK/aak-2 by NRF2/SKN-1 down-regulates autophagy during prolonged oxidative stress.


Assuntos
Autofagia , Proteínas de Caenorhabditis elegans/antagonistas & inibidores , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Proteínas Quinases Ativadas por AMP , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ligação a DNA/genética , Regulação para Baixo , Células HEK293 , Humanos , Fator 2 Relacionado a NF-E2/genética , Oxirredução , Fosforilação , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição/genética
2.
Int J Mol Sci ; 20(20)2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31614497

RESUMO

Besides the liver, which has always been considered the major source of endogenous glucose production in all post-absorptive situations, kidneys and intestines can also produce glucose in blood, particularly during fasting and under protein feeding. However, observations gained in different experimental animals have given ambiguous results concerning the presence of the glucose-6-phosphatase system in the small intestine. The aim of this study was to better define the species-related differences of this putative gluconeogenic organ in glucose homeostasis. The components of the glucose-6-phosphatase system (i.e., glucose-6-phosphate transporter and glucose-6-phosphatase itself) were analyzed in homogenates or microsomal fractions prepared from the small intestine mucosae and liver of rats, guinea pigs, and humans. Protein and mRNA levels, as well as glucose-6-phosphatase activities, were detected. The results showed that the glucose-6-phosphatase system is poorly represented in the small intestine of rats; on the other hand, significant expressions of glucose-6-phosphate transporter and of the glucose-6-phosphatase were found in the small intestine of guinea pigs and homo sapiens. The activity of the recently described fructose-6-phosphate transporter-intraluminal hexose isomerase pathway was also present in intestinal microsomes from these two species. The results demonstrate that the gluconeogenic role of the small intestine is highly species-specific and presumably dependent on feeding behavior (e.g., fructose consumption) and the actual state of metabolism.


Assuntos
Glucose-6-Fosfatase/genética , Glucose-6-Fosfatase/metabolismo , Intestino Delgado/enzimologia , Animais , Frutose/metabolismo , Cobaias , Humanos , Microssomos/enzimologia , Ratos , Especificidade da Espécie
3.
Int J Mol Sci ; 18(1)2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-28067773

RESUMO

Accumulation of misfolded/unfolded proteins in the endoplasmic reticulum (ER) leads to the activation of three branches (Protein kinase (RNA)-like endoplasmic reticulum kinase [PERK], Inositol requiring protein 1 [IRE-1] and Activating trascription factor 6 [ATF6], respectively) of unfolded protein response (UPR). The primary role of UPR is to try to drive back the system to the former or a new homeostatic state by self-eating dependent autophagy, while excessive level of ER stress results in apoptotic cell death. Our study focuses on the role of PERK- and IRE-1-induced arms of UPR in life-or-death decision. Here we confirm that silencing of PERK extends autophagy-dependent survival, whereas the IRE-1-controlled apoptosis inducer is downregulated during ER stress. We also claim that the proper order of surviving and self-killing mechanisms is controlled by a positive feedback loop between PERK and IRE-1 branches. This regulatory network makes possible a smooth, continuous activation of autophagy with respect to ER stress, while the induction of apoptosis is irreversible and switch-like. Using our knowledge of molecular biological techniques and systems biological tools we give a qualitative description about the dynamical behavior of PERK- and IRE-1-controlled life-or-death decision. Our model claims that the two arms of UPR accomplish an altered upregulation of autophagy and apoptosis inducers during ER stress. Since ER stress is tightly connected to aging and age-related degenerative disorders, studying the signaling pathways of UPR and their role in maintaining ER proteostasis have medical importance.


Assuntos
Estresse do Retículo Endoplasmático/genética , Transdução de Sinais/genética , Biologia de Sistemas/métodos , eIF-2 Quinase/genética , Apoptose/genética , Autofagia/genética , Western Blotting , Sobrevivência Celular/genética , Endorribonucleases/genética , Endorribonucleases/metabolismo , Retroalimentação Fisiológica , Expressão Gênica , Células HEK293 , Homeostase/genética , Humanos , Modelos Biológicos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Resposta a Proteínas não Dobradas/genética , eIF-2 Quinase/metabolismo
4.
Biomed Res Int ; 2015: 319589, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25984530

RESUMO

One of the most important tasks of a living organism is to maintain its genetic integrity with respect to stress. Endoplasmic reticulum (ER) has a crucial role in sensing cellular homeostasis by controlling metabolism, proteostasis, and several signaling processes. ER stressors can induce autophagy-dependent survival; however excessive level of stress results in apoptotic cell death. Although many molecular components of these networks have already been discovered, the analysis of the dynamical features of the regulatory network of life-or-death decision is still lacking. Our goal was to incorporate both theoretical and molecular biological techniques to explore the autophagy-apoptosis crosstalk under ER stress. Using various levels of different ER stressors we confirmed that the control network always generated an evidently detectable autophagy-dependent threshold for apoptosis activation. We explored the features of this threshold by introducing both autophagy activators and inhibitors, and transient treatment with excessive level of ER stressor was also performed. Our experimental data were also supported by a stochastic approach. Our analysis suggests that even if the switch-like characteristic of apoptosis activation is hardly seen on population level the double negative feedback loop between autophagy and apoptosis inducers introduces bistability in the control network.


Assuntos
Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Simulação por Computador , Ditiotreitol/farmacologia , Células HEK293 , Células Hep G2 , Humanos , Modelos Biológicos , Processos Estocásticos , Fatores de Tempo , Tunicamicina/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa