Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Genes Dev ; 38(9-10): 415-435, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38866555

RESUMO

The association of genomic loci to the nuclear periphery is proposed to facilitate cell type-specific gene repression and influence cell fate decisions. However, the interplay between gene position and expression remains incompletely understood, in part because the proteins that position genomic loci at the nuclear periphery remain unidentified. Here, we used an Oligopaint-based HiDRO screen targeting ∼1000 genes to discover novel regulators of nuclear architecture in Drosophila cells. We identified the heterochromatin-associated protein Stonewall (Stwl) as a factor promoting perinuclear chromatin positioning. In female germline stem cells (GSCs), Stwl binds and positions chromatin loci, including GSC differentiation genes, at the nuclear periphery. Strikingly, Stwl-dependent perinuclear positioning is associated with transcriptional repression, highlighting a likely mechanism for Stwl's known role in GSC maintenance and ovary homeostasis. Thus, our study identifies perinuclear anchors in Drosophila and demonstrates the importance of gene repression at the nuclear periphery for cell fate.


Assuntos
Diferenciação Celular , Núcleo Celular , Cromatina , Proteínas de Drosophila , Animais , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Cromatina/metabolismo , Cromatina/genética , Núcleo Celular/metabolismo , Núcleo Celular/genética , Feminino , Diferenciação Celular/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Células-Tronco/metabolismo , Células-Tronco/citologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Drosophila/genética , Células Germinativas/metabolismo
2.
Nat Rev Mol Cell Biol ; 18(4): 229-245, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28120913

RESUMO

As a compartment border, the nuclear envelope (NE) needs to serve as both a protective membrane shell for the genome and a versatile communication interface between the nucleus and the cytoplasm. Despite its important structural role in sheltering the genome, the NE is a dynamic and highly adaptable boundary that changes composition during differentiation, deforms in response to mechanical challenges, can be repaired upon rupture and even rapidly disassembles and reforms during open mitosis. NE remodelling is fundamentally involved in cell growth, division and differentiation, and if perturbed can lead to devastating diseases such as muscular dystrophies or premature ageing.


Assuntos
Diferenciação Celular , Mitose , Membrana Nuclear/fisiologia , Transporte Ativo do Núcleo Celular , Animais , Capsídeo/metabolismo , Diferenciação Celular/fisiologia , Movimento Celular , Humanos , Neutrófilos/metabolismo
3.
Cell ; 152(6): 1222-5, 2013 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-23498932

RESUMO

During mitosis in vertebrate cells, the nuclear envelope undergoes extensive structural reorganization, starting with the retraction of nuclear membranes into the ER at mitotic onset and ending with the re-enclosure of chromatin by ER-derived membranes during mitotic exit. Here, we review our current understanding of postmitotic nuclear assembly.


Assuntos
Núcleo Celular/metabolismo , Mitose , Modelos Biológicos , Membrana Nuclear/metabolismo , Animais , Retículo Endoplasmático/metabolismo , Humanos
4.
EMBO J ; 42(7): e112699, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36762427

RESUMO

The assembly of ribosomal subunits is a highly orchestrated process that involves a huge cohort of accessory factors. Most eukaryotic ribosome biogenesis factors were first identified by genetic screens and proteomic approaches of pre-ribosomal particles in Saccharomyces cerevisiae. Later, research on human ribosome synthesis not only demonstrated that the requirement for many of these factors is conserved in evolution, but also revealed the involvement of additional players, reflecting a more complex assembly pathway in mammalian cells. Yet, it remained a challenge for the field to assign a function to many of the identified factors and to reveal their molecular mode of action. Over the past decade, structural, biochemical, and cellular studies have largely filled this gap in knowledge and led to a detailed understanding of the molecular role that many of the players have during the stepwise process of ribosome maturation. Such detailed knowledge of the function of ribosome biogenesis factors will be key to further understand and better treat diseases linked to disturbed ribosome assembly, including ribosomopathies, as well as different types of cancer.


Assuntos
Proteínas Ribossômicas , Proteínas de Saccharomyces cerevisiae , Humanos , Proteínas Ribossômicas/genética , Proteômica , Ribossomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , RNA Ribossômico/genética , RNA Ribossômico/metabolismo
5.
Cell ; 149(5): 1035-47, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-22632968

RESUMO

Linker of nucleoskeleton and cytoskeleton (LINC) complexes span the nuclear envelope and are composed of KASH and SUN proteins residing in the outer and inner nuclear membrane, respectively. LINC formation relies on direct binding of KASH and SUN in the perinuclear space. Thereby, molecular tethers are formed that can transmit forces for chromosome movements, nuclear migration, and anchorage. We present crystal structures of the human SUN2-KASH1/2 complex, the core of the LINC complex. The SUN2 domain is rigidly attached to a trimeric coiled coil that prepositions it to bind three KASH peptides. The peptides bind in three deep and expansive grooves formed between adjacent SUN domains, effectively acting as molecular glue. In addition, a disulfide between conserved cysteines on SUN and KASH covalently links both proteins. The structure provides the basis of LINC complex formation and suggests a model for how LINC complexes might arrange into higher-order clusters to enhance force-coupling.


Assuntos
Cristalografia por Raios X , Peptídeos e Proteínas de Sinalização Intracelular/química , Proteínas de Membrana/química , Proteínas dos Microfilamentos/química , Proteínas do Tecido Nervoso/química , Proteínas Nucleares/química , Sequência de Aminoácidos , Proteínas do Citoesqueleto , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lectinas/química , Proteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/metabolismo , Membrana Nuclear/química , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Estrutura Terciária de Proteína , Alinhamento de Sequência
6.
Cell ; 144(4): 539-50, 2011 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-21335236

RESUMO

Disassembly of nuclear pore complexes (NPCs) is a decisive event during mitotic entry in cells undergoing open mitosis, yet the molecular mechanisms underlying NPC disassembly are unknown. Using chemical inhibition and depletion experiments we show that NPC disassembly is a phosphorylation-driven process, dependent on CDK1 activity and supported by members of the NIMA-related kinase (Nek) family. We identify phosphorylation of the GLFG-repeat nucleoporin Nup98 as an important step in mitotic NPC disassembly. Mitotic hyperphosphorylation of Nup98 is accomplished by multiple kinases, including CDK1 and Neks. Nuclei carrying a phosphodeficient mutant of Nup98 undergo nuclear envelope breakdown slowly, such that both the dissociation of Nup98 from NPCs and the permeabilization of the nuclear envelope are delayed. Together, our data provide evidence for a phosphorylation-dependent mechanism underlying disintegration of NPCs during prophase. Moreover, we identify mitotic phosphorylation of Nup98 as a rate-limiting step in mitotic NPC disassembly.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Mitose , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Poro Nuclear/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Aspergillus/citologia , Proteína Quinase CDC2/metabolismo , Ciclo Celular , Núcleo Celular/metabolismo , Células HeLa , Humanos , Mutação , Quinase 1 Relacionada a NIMA , Membrana Nuclear/metabolismo , Fosforilação , Prófase
7.
Nature ; 587(7835): 683-687, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33208940

RESUMO

Eukaryotic ribosomes consist of a small 40S and a large 60S subunit that are assembled in a highly coordinated manner. More than 200 factors ensure correct modification, processing and folding of ribosomal RNA and the timely incorporation of ribosomal proteins1,2. Small subunit maturation ends in the cytosol, when the final rRNA precursor, 18S-E, is cleaved at site 3 by the endonuclease NOB13. Previous structures of human 40S precursors have shown that NOB1 is kept in an inactive state by its partner PNO14. The final maturation events, including the activation of NOB1 for the decisive rRNA-cleavage step and the mechanisms driving the dissociation of the last biogenesis factors have, however, remained unresolved. Here we report five cryo-electron microscopy structures of human 40S subunit precursors, which describe the compositional and conformational progression during the final steps of 40S assembly. Our structures explain the central role of RIOK1 in the displacement and dissociation of PNO1, which in turn allows conformational changes and activation of the endonuclease NOB1. In addition, we observe two factors, eukaryotic translation initiation factor 1A domain-containing protein (EIF1AD) and leucine-rich repeat-containing protein 47 (LRRC47), which bind to late pre-40S particles near RIOK1 and the central rRNA helix 44. Finally, functional data shows that EIF1AD is required for efficient assembly factor recycling and 18S-E processing. Our results thus enable a detailed understanding of the last steps in 40S formation in human cells and, in addition, provide evidence for principal differences in small ribosomal subunit formation between humans and the model organism Saccharomyces cerevisiae.


Assuntos
Microscopia Crioeletrônica , Subunidades Ribossômicas Menores de Eucariotos/química , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Ativação Enzimática , Células HeLa , Humanos , Modelos Moleculares , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas Nucleares/ultraestrutura , Conformação Proteica , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/ultraestrutura , Proteínas/química , Proteínas/metabolismo , Proteínas/ultraestrutura , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/ultraestrutura , Subunidades Ribossômicas Menores de Eucariotos/ultraestrutura , Saccharomyces cerevisiae/química
8.
EMBO J ; 40(23): e108788, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34725842

RESUMO

During mitotic exit, thousands of nuclear pore complexes (NPCs) assemble concomitant with the nuclear envelope to build a transport-competent nucleus. Here, we show that Nup50 plays a crucial role in NPC assembly independent of its well-established function in nuclear transport. RNAi-mediated downregulation in cells or immunodepletion of Nup50 protein in Xenopus egg extracts interferes with NPC assembly. We define a conserved central region of 46 residues in Nup50 that is crucial for Nup153 and MEL28/ELYS binding, and for NPC interaction. Surprisingly, neither NPC interaction nor binding of Nup50 to importin α/ß, the GTPase Ran, or chromatin is crucial for its function in the assembly process. Instead, an N-terminal fragment of Nup50 can stimulate the Ran GTPase guanine nucleotide exchange factor RCC1 and NPC assembly, indicating that Nup50 acts via the Ran system in NPC reformation at the end of mitosis. In support of this conclusion, Nup50 mutants defective in RCC1 binding and stimulation cannot replace the wild-type protein in in vitro NPC assembly assays, whereas excess RCC1 can compensate the loss of Nup50.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Mitose , Mutação , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/genética , Feminino , Fatores de Troca do Nucleotídeo Guanina/genética , Células HeLa , Humanos , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Xenopus laevis
9.
EMBO Rep ; 24(9): e56766, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37469276

RESUMO

During mitotic entry of vertebrate cells, nuclear pore complexes (NPCs) are rapidly disintegrated. NPC disassembly is initiated by hyperphosphorylation of linker nucleoporins (Nups), which leads to the dissociation of FG repeat Nups and relaxation of the nuclear permeability barrier. However, less is known about disintegration of the huge nuclear and cytoplasmic rings, which are formed by annular assemblies of Y-complexes that are dissociated from NPCs as intact units. Surprisingly, we observe that Y-complex Nups display slower dissociation kinetics compared with other Nups during in vitro NPC disassembly, indicating a mechanistic difference in the disintegration of Y-based rings. Intriguingly, biochemical experiments reveal that a fraction of Y-complexes remains associated with mitotic ER membranes, supporting recent microscopic observations. Visualization of mitotic Y-complexes by super-resolution microscopy demonstrates that they form two classes of higher order assemblies: large clusters at kinetochores and small, focal ER-associated assemblies. These, however, lack features qualifying them as persisting ring-shaped subassemblies previously proposed to serve as structural templates for NPC reassembly during mitotic exit, which helps to refine current models of nuclear reassembly.


Assuntos
Microscopia , Mitose , Poro Nuclear , Núcleo Celular , Complexo de Proteínas Formadoras de Poros Nucleares/genética
10.
Nucleic Acids Res ; 50(5): 2872-2888, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35150276

RESUMO

Ribosome assembly is an essential process that is linked to human congenital diseases and tumorigenesis. While great progress has been made in deciphering mechanisms governing ribosome biogenesis in eukaryotes, an inventory of factors that support ribosome synthesis in human cells is still missing, in particular regarding the maturation of the large 60S subunit. Here, we performed a genome-wide RNAi screen using an imaging-based, single cell assay to unravel the cellular machinery promoting 60S subunit assembly in human cells. Our screen identified a group of 310 high confidence factors. These highlight the conservation of the process across eukaryotes and reveal the intricate connectivity of 60S subunit maturation with other key cellular processes, including splicing, translation, protein degradation, chromatin organization and transcription. Intriguingly, we also identified a cluster of hits comprising metabolic enzymes of the polyamine synthesis pathway. We demonstrate that polyamines, which have long been used as buffer additives to support ribosome assembly in vitro, are required for 60S maturation in living cells. Perturbation of polyamine metabolism results in early defects in 60S but not 40S subunit maturation. Collectively, our data reveal a novel function for polyamines in living cells and provide a rich source for future studies on ribosome synthesis.


Assuntos
Poliaminas , Proteínas de Saccharomyces cerevisiae , Humanos , Poliaminas/metabolismo , Interferência de RNA , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
Cell ; 134(4): 564-6, 2008 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-18724928

RESUMO

During nuclear export, Gle1 (the nuclear-pore-associated mRNA export factor) activates the DEAD-box protein Dbp5 to remodel exported mRNA-protein complexes on the cytoplasmic face of the nuclear pore complex. In this issue, Bolger et al. (2008) now report additional roles for Gle1 in translation initiation and termination.


Assuntos
Proteínas de Transporte/metabolismo , Biossíntese de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Modelos Biológicos , Complexo de Proteínas Formadoras de Poros Nucleares , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/genética
14.
Anal Chem ; 93(28): 9760-9770, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34228921

RESUMO

Acoustically excited microstructures have demonstrated significant potential for small-scale biomedical applications by overcoming major microfluidic limitations. Recently, the application of oscillating microbubbles has demonstrated their superiority over acoustically excited solid structures due to their enhanced acoustic streaming at low input power. However, their limited temporal stability hinders their direct applicability for industrial or clinical purposes. Here, we introduce the embedded microbubble, a novel acoustofluidic design based on the combination of solid structures (poly(dimethylsiloxane)) and microbubbles (air-filled cavity) to combine the benefits of both approaches while minimizing their drawbacks. We investigate the influence of various design parameters and geometrical features through numerical simulations and experimentally evaluate their manipulation capabilities. Finally, we demonstrate the capabilities of our design for microfluidic applications by investigating its mixing performance as well as through the controlled rotational manipulation of individual HeLa cells.


Assuntos
Microbolhas , Microfluídica , Acústica , Células HeLa , Humanos
15.
RNA ; 25(6): 685-701, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30910870

RESUMO

Eukaryotic ribosome biogenesis is a highly orchestrated process involving numerous assembly factors including ATP-dependent RNA helicases. The DEAH helicase DHX37 (Dhr1 in yeast) is activated by the ribosome biogenesis factor UTP14A to facilitate maturation of the small ribosomal subunit. We report the crystal structure of DHX37 in complex with single-stranded RNA, revealing a canonical DEAH ATPase/helicase architecture complemented by a structurally unique carboxy-terminal domain (CTD). Structural comparisons of the nucleotide-free DHX37-RNA complex with DEAH helicases bound to RNA and ATP analogs reveal conformational changes resulting in a register shift in the bound RNA, suggesting a mechanism for ATP-dependent 3'-5' RNA translocation. We further show that a conserved sequence motif in UTP14A interacts with and activates DHX37 by stimulating its ATPase activity and enhancing RNA binding. In turn, the CTD of DHX37 is required, but not sufficient, for interaction with UTP14A in vitro and is essential for ribosome biogenesis in vivo. Together, these results shed light on the mechanism of DHX37 and the function of UTP14A in controlling its recruitment and activity during ribosome biogenesis.


Assuntos
Adenosina Trifosfatases/química , Trifosfato de Adenosina/análogos & derivados , RNA Helicases DEAD-box/química , Biogênese de Organelas , RNA Helicases/química , RNA/química , Ribonucleoproteínas Nucleolares Pequenas/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Cinética , Camundongos , Modelos Moleculares , Ligação Proteica , Biossíntese de Proteínas , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , RNA/metabolismo , RNA Helicases/genética , RNA Helicases/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Ribonucleoproteínas Nucleolares Pequenas/genética , Ribonucleoproteínas Nucleolares Pequenas/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Especificidade por Substrato
16.
Nat Rev Mol Cell Biol ; 10(3): 178-91, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19234477

RESUMO

Cell division in eukaryotes requires extensive architectural changes of the nuclear envelope (NE) to ensure that segregated DNA is finally enclosed in a single cell nucleus in each daughter cell. Higher eukaryotic cells have evolved 'open' mitosis, the most extreme mechanism to solve the problem of nuclear division, in which the NE is initially completely disassembled and then reassembled in coordination with DNA segregation. Recent progress in the field has now started to uncover mechanistic and molecular details that underlie the changes in NE reorganization during open mitosis. These studies reveal a tight interplay between NE components and the mitotic machinery.


Assuntos
Núcleo Celular/metabolismo , Mitose , Membrana Nuclear/metabolismo , Animais , Núcleo Celular/química , Previsões , Humanos , Modelos Biológicos , Membrana Nuclear/química
17.
Methods ; 153: 63-70, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30194975

RESUMO

Ribosomes are formed of a small and a large subunit (SSU/LSU), both consisting of rRNA and a plethora of accessory proteins. While biochemical and genetic studies identified most of the involved proteins and deciphered the ribosomal synthesis steps, our knowledge of the molecular dynamics of the different ribosomal subunits and also of the kinetics of their intracellular trafficking is still limited. Adopting a labelling strategy initially used to study mRNA export we were able to fluorescently stain the SSU in vivo. We chose DIM2/PNO1 (Defective In DNA Methylation 2/Partner of NOb1) as labelling target and created a stable cell line carrying an inducible SNAP-DIM2 fusion protein. After bulk labelling with a green fluorescent dye combined with very sparse labelling with a red fluorescent dye the nucleoli and single SSU could be visualized simultaneously in the green and red channel, respectively. We used single molecule microscopy to track single SSU in the nucleolus and nucleoplasm. Resulting trajectory data were analyzed by jump-distance analysis and the variational Bayes single-particle tracking approach. Both methods allowed identifying the number of diffusive states and the corresponding diffusion coefficients. For both nucleoli and nucleoplasm we could identify mobile (D = 2.3-2.8 µm2/s), retarded (D = 0.18-0.31 µm2/s) and immobilized (D = 0.04-0.05 µm2/s) SSU fractions and, as expected, the size of the fractions differed in the two compartments. While the fast mobility fraction matches perfectly the expected nuclear mobility of the SSU (D = 2.45 µm2/s), we were surprised to find a substantial fraction (33%) of immobile SSU in the nucleoplasm, something not observed for inert control molecules.


Assuntos
Subunidades Ribossômicas Menores/metabolismo , Imagem Individual de Molécula/métodos , Transporte Biológico , Células HeLa , Humanos , Microscopia Confocal , Microscopia de Fluorescência/métodos , Transporte Proteico , Transporte de RNA
18.
Nucleic Acids Res ; 45(11): 6822-6836, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28402503

RESUMO

The poly-A specific ribonuclease (PARN), initially characterized for its role in mRNA catabolism, supports the processing of different types of non-coding RNAs including telomerase RNA. Mutations in PARN are linked to dyskeratosis congenita and pulmonary fibrosis. Here, we show that PARN is part of the enzymatic machinery that matures the human 18S ribosomal RNA (rRNA). Consistent with its nucleolar steady-state localization, PARN is required for 40S ribosomal subunit production and co-purifies with 40S subunit precursors. Depletion of PARN or expression of a catalytically-compromised PARN mutant results in accumulation of 3΄ extended 18S rRNA precursors. Analysis of these processing intermediates reveals a defect in 3΄ to 5΄ trimming of the internal transcribed spacer 1 (ITS1) region, subsequent to endonucleolytic cleavage at site E. Consistent with a function of PARN in exonucleolytic trimming of 18S-E pre-rRNA, recombinant PARN can process the corresponding ITS1 RNA fragment in vitro. Trimming of 18S-E pre-rRNA by PARN occurs in the nucleus, upstream of the final endonucleolytic cleavage by the endonuclease NOB1 in the cytoplasm. These results identify PARN as a new component of the ribosome biogenesis machinery in human cells. Defects in ribosome biogenesis could therefore underlie the pathologies linked to mutations in PARN.


Assuntos
Exorribonucleases/fisiologia , RNA Ribossômico 18S/biossíntese , Núcleo Celular/metabolismo , DNA Espaçador Ribossômico/metabolismo , Células HEK293 , Células HeLa , Humanos , Proteínas Nucleares/metabolismo , Processamento Pós-Transcricional do RNA , Proteínas de Ligação a RNA/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/metabolismo
19.
Nucleic Acids Res ; 44(20): 9803-9820, 2016 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-27599843

RESUMO

Mammalian AATF/Che-1 is essential for embryonic development, however, the underlying molecular mechanism is unclear. By immunoprecipitation of human AATF we discovered that AATF forms a salt-stable protein complex together with neuroguidin (NGDN) and NOL10, and demonstrate that the AATF-NGDN-NOL10 (ANN) complex functions in ribosome biogenesis. All three ANN complex members localize to nucleoli and display a mutual dependence with respect to protein stability. Mapping of protein-protein interaction domains revealed the importance of both the evolutionary conserved WD40 repeats in NOL10 and the UTP3/SAS10 domain in NGDN for complex formation. Functional analysis showed that the ANN complex supports nucleolar steps of 40S ribosomal subunit biosynthesis. All complex members were required for 18S rRNA maturation and their individual depletion affected the same nucleolar cleavage steps in the 5'ETS and ITS1 regions of the ribosomal RNA precursor. Collectively, we identified the ANN complex as a novel functional module supporting the nucleolar maturation of 40S ribosomal subunits. Our data help to explain the described role of AATF in cell proliferation during mouse development as well as its requirement for malignant tumor growth.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Biossíntese de Proteínas , Proteínas Repressoras/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Animais , Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/genética , Linhagem Celular , Nucléolo Celular/metabolismo , Humanos , Camundongos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Proteínas de Ligação a RNA , Proteínas Repressoras/química , Proteínas Repressoras/genética , Ribossomos/metabolismo
20.
Nucleic Acids Res ; 44(17): 8465-78, 2016 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-27530427

RESUMO

Synthesis of ribosomal subunits in eukaryotes is a complex and tightly regulated process that has been mostly characterized in yeast. The discovery of a growing number of diseases linked to defects in ribosome biogenesis calls for a deeper understanding of these mechanisms and of the specificities of human ribosome maturation. We present the 19 Å resolution cryo-EM reconstruction of a cytoplasmic precursor to the human small ribosomal subunit, purified by using the tagged ribosome biogenesis factor LTV1 as bait. Compared to yeast pre-40S particles, this first three-dimensional structure of a human 40S subunit precursor shows noticeable differences with respect to the position of ribosome biogenesis factors and uncovers the early deposition of the ribosomal protein RACK1 during subunit maturation. Consistently, RACK1 is required for efficient processing of the 18S rRNA 3'-end, which might be related to its role in translation initiation. This first structural analysis of a human pre-ribosomal particle sets the grounds for high-resolution studies of conformational transitions accompanying ribosomal subunit maturation.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Proteínas de Neoplasias/metabolismo , Processamento Pós-Transcricional do RNA/genética , RNA Ribossômico 18S/genética , Receptores de Superfície Celular/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/química , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Sequência Conservada , Microscopia Crioeletrônica , Citoplasma/metabolismo , Células HEK293 , Células HeLa , Humanos , Modelos Moleculares , Biogênese de Organelas , Ligação Proteica , Receptores de Quinase C Ativada , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/ultraestrutura , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa