Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ecol Evol ; 6(16): 5987-6004, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27547371

RESUMO

A long-standing goal of evolutionary biology is to understand how paleoclimatic and geological events shape the geographical distribution and genetic structure within and among species. Using a diverse set of markers (cuticular hydrocarbons, mitochondrial and nuclear gene sequences, microsatellite loci), we studied Reticulitermes grassei and R. banyulensis, two closely related termite species in southwestern Europe. We sought to clarify the current genetic structure of populations that formed following postglacial dispersal from refugia in southern Spain and characterize the gene flow between the two lineages over the last several million years. Each marker type separately provided a fragmented picture of the evolutionary history at different timescales. Chemical analyses of cuticular hydrocarbons and phylogenetic analyses of mitochondrial and nuclear genes showed clear separation between the species, suggesting they diverged following vicariance events in the Late Miocene. However, the presence of intermediate chemical profiles and mtDNA introgression in some Spanish colonies suggests ongoing gene flow. The current genetic structure of Iberian populations is consistent with alternating isolation and dispersal events during Quaternary glacial periods. Analyses of population genetic structure revealed postglacial colonization routes from southern Spain to France, where populations underwent strong genetic bottlenecks after traversing the Pyrenees resulting in parapatric speciation.

2.
Ecol Evol ; 5(15): 3090-102, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26357538

RESUMO

In population genetics studies, detecting and quantifying the distribution of genetic variation can help elucidate ecological and evolutionary processes. In social insects, the distribution of population-level genetic variability is generally linked to colony-level genetic structure. It is thus especially crucial to conduct complementary analyses on such organisms to examine how spatial and social constraints interact to shape patterns of intraspecific diversity. In this study, we sequenced the mitochondrial COII gene for 52 colonies of the subterranean termite Reticulitermes grassei (Isoptera: Rhinotermitidae), sampled from a population in southwestern France. Three haplotypes were detected, one of which was found exclusively in the southern part of the study area (near the Pyrenees). After genotyping 6 microsatellite loci for 512 individual termites, we detected a significant degree of isolation by distance among individuals over the entire range; however, the cline of genetic differentiation was not continuous, suggesting the existence of differentiated populations. A spatial principal component analysis based on allele frequency data revealed significant spatial autocorrelation among genotypes: the northern and southern groups were strongly differentiated. This finding was corroborated by clustering analyses; depending on the randomized data set, two or three clusters, exhibiting significant degrees of differentiation, were identified. An examination of colony breeding systems showed that colonies containing related neotenic reproductives were prevalent, suggesting that inbreeding may contribute to the high level of homozygosity observed and thus enhance genetic contrasts among colonies. We discuss the effect of evolutionary and environmental factors as well as reproductive and dispersal modes on population genetic structure.

3.
Int J Environ Res Public Health ; 10(11): 6169-83, 2013 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-24240728

RESUMO

Various types of surfaces are used today in the food industry, such as plastic, stainless steel, glass, and wood. These surfaces are subject to contamination by microorganisms responsible for the cross-contamination of food by contact with working surfaces. The HACCP-based processes are now widely used for the control of microbial hazards to prevent food safety issues. This preventive approach has resulted in the use of microbiological analyses of surfaces as one of the tools to control the hygiene of products. A method of recovering microorganisms from different solid surfaces is necessary as a means of health prevention. No regulation exists for surface microbial contamination, but food companies tend to establish technical specifications to add value to their products and limit contamination risks. The aim of this review is to present the most frequently used methods: swabbing, friction or scrubbing, printing, rinsing or immersion, sonication and scraping or grinding and describe their advantages and drawbacks. The choice of the recovery method has to be suitable for the type and size of the surface tested for microbiological analysis. Today, quick and cheap methods have to be standardized and especially easy to perform in the field.


Assuntos
Microbiologia de Alimentos/métodos , Indústria de Processamento de Alimentos/métodos , Contaminação de Alimentos/prevenção & controle , Plásticos/análise , Aço Inoxidável/análise , Madeira/microbiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa