Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 13438, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862649

RESUMO

The study covered a small, shallow lake, intensively used for recreation (sailing, tourist services and port infrastructure). This study aimed to determine the spatial differentiation of bottom sediments and the potential for phosphorus release in five zones, differing mainly in the type of recreation, depth, direct catchment management, shoreline management and macrophyte presence. The results were used to propose protective and restoration measures to improve the water quality of the studied lake. The innovation in the study was the detailed analysis of bottom sediments, which can be a significant source of pollution besides the external load from the catchment and tourist pressure, in the planned management of this ecosystem. Examination of the physicochemical properties of the bottom sediments showed a clear variation in both composition and potential for internal phosphorus loading. The sediments from the profundal zone, where the most boating activity was observed, together with the sediments from the shallow zone where the boats dock (mooring zone), had the highest potential to supply phosphorus to the bottom waters. This fact was demonstrated by the highest total phosphorus (TP) concentrations in sediments (up to 1.32 mgPg-1 DW) and the content of the most mobile fractions (up to 33%). The other zones associated with the marina, fuel zone, tributary and canal were not significant sources of phosphorus to the ecosystem. Based on the above results, a restoration method involving the removal of bottom sediments from the bottom zone was proposed, supported, of course, by protective measures in the catchment (maintaining a buffer zone around the lake and limiting the inflow of pollutants with tributary waters). The proposed measures with sustainable tourist pressure should improve water quality and thus contribute to protecting this valuable natural landscape.

2.
Front Plant Sci ; 14: 1307453, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38264028

RESUMO

Aquatic vegetation is a reliable indicator of the ecological condition of surface waters. Abundance, composition and spatial structure of aquatic communities are shaped by an array of factors, which include both natural abiotic features of an ecosystem and external influences. We investigated whether the physical features, i.e., wind exposure and slope of the lake basin, have a significant impact on the taxonomic composition and spatial structure of macrophyte communities from non-impacted, highly alkaline, lowland lakes of the European plains (Poland). We further examined whether these features can affect the classification of the ecological status of lakes assessed in accordance with the Water Framework Directive requirements. Morphological, botanical and physicochemical data from 260 transects in 16 non-disturbed lakes of Polish lowlands surveyed in the years 2011-2016 were analysed. For each transect, littoral slope and wind exposure were calculated. Additionally, the total phosphorus concentration was used as a proxy of water trophy. The relationships between environmental variables and macrophyte indices as well as the syntaxonomic composition of aquatic and rush vegetation (dependent variables) were analysed using multidimensional ordination techniques (redundancy analysis, variation partitioning and indicator values), correlation and regression analysis. Among the three analysed environmental factors (littoral slope, wind exposure and water trophy), in almost all cases the latter explained the highest variance in the macrophyte community, while the contribution of the first two was at most moderate, weak or usually statistically insignificant. However, lakes with steeper slopes were more frequently inhabited by stoneworts and had better ecological status than those with a gentle littoral shape. This may be attributed to the links between lake morphometry and rate of eutrophication, with deep lakes supporting more effective dilution of substances. Furthermore, lower light requirements of charophytes than of higher plants and the capacity to growth in unstable sediments facilitate charophyte establishment in deeper and steeper parts of the littoral over higher plants. Our findings suggest that in lowland lakes with relatively small areas, moderate depths and low wind exposure typical of European plains, slopes and weaving do not hamper vegetation development and do not negatively affect the macrophyte assessment of ecological status. In such ecosystems, eutrophication seems to be a more important factor determining aquatic vegetation than physical features.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa