Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(38): 21066-21076, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37703462

RESUMO

Reversible post-translational modifications (PTMs) are key to establishing protein-protein and protein-nucleic acid interactions that govern a majority of the signaling pathways in cells. Sequence-specific PTMs are catalyzed by transferases, and their removal is carried out by a class of reverse-acting enzymes termed "detransferases". Currently available chemoproteomic approaches have been valuable in characterizing substrates of transferases. However, proteome-wide cataloging of the substrates of detransferases is challenging, mostly due to the loss of the epitope, rendering immunoprecipitation and activity-based methods ineffective. Herein, we develop a general chemoproteomic strategy called crosslinking-assisted substrate identification (CASI) for systematic characterization of cellular targets of detransferases and successfully apply it to lysine demethylases (KDMs) which catalyze the removal of methyl groups from lysine sidechain in histones to modulate gene transcription. By setting up a targeted azido-methylamino photo-reaction deep inside the active site of KDM4, engineered to carry p-azido phenylalanine, we reveal a novel "demethylome" that has escaped the traditional methods. The proteomic survey led to the identification of a battery of nonhistone substrates of KDM4, extending the biological footprint of KDM4 beyond its canonical functions in gene transcription. A notable finding of KDM4A-mediated demethylation of an evolutionarily conserved lysine residue in eukaryotic translational initiation factor argues for a much broader role of KDM4A in ribosomal processes. CASI, representing a substantive departure from earlier approaches by shifting focus from simple peptide-based probes to employing full-length photo-activatable demethylases, is poised to be applied to >400 human detransferases, many of which have remained poorly understood due to the lack of knowledge about their cellular targets.


Assuntos
Histona Desmetilases com o Domínio Jumonji , Lisina , Humanos , Histona Desmetilases com o Domínio Jumonji/metabolismo , Lisina/química , Azidas , Proteômica , Transferases , Histona Desmetilases/metabolismo
2.
RSC Chem Biol ; 3(8): 1061-1068, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35975005

RESUMO

Bromodomain containing protein 1 (BRD1) plays critical roles in chromatin acetylation, gene transcription, erythropoiesis, and brain development. BRD1 is also implicated in several human conditions and is a therapeutic target for cancer. Although, the bromodomain is known to bind acetylated histones, how the function of BRD1 is regulated via non-histone acetylation is unexplored. To identify the non-histone acetylome of BRD1, we develop an R585AzF variant carrying photo responsive 4-azido phenylalanine (AzF) via amber suppressor mutagenesis. We demonstrate biochemical integrity of the AzF-containing analogue and its ability to crosslink non-histone interacting partners present in human cells. Subsequent proteomic experiments led to the identification of the novel BRD1 interactome representing diverse signaling pathways. As a proof-of-concept demonstration, we validated acetylated PDIA1 protein as a bona fide binding partner of BRD1. Our work suggests that BRD1 interacts with additional acetyllysine motifs, beyond those characterized in histone proteins.

3.
ACS Chem Biol ; 17(12): 3321-3330, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34496208

RESUMO

Closely related protein families evolved from common ancestral genes present a significant hurdle in developing member- and isoform-specific chemical probes, owing to their similarity in fold and function. In this piece of work, we explore an allele-specific chemical rescue strategy to activate a "dead" variant of a wildtype protein using synthetic cofactors and demonstrate its successful application to the members of the alpha-ketoglutarate (αKG)-dependent histone demethylase 4 (KDM4) family. We show that a mutation at a specific residue in the catalytic site renders the variant inactive toward the natural cosubstrate. In contrast, αKG derivatives bearing appropriate stereoelectronic features endowed the mutant with native-like demethylase activity while remaining refractory to a set of wild type dioxygenases. The orthogonal enzyme-cofactor pairs demonstrated site- and degree-specific lysine demethylation on a full-length chromosomal histone in the cellular milieu. Our work offers a strategy to modulate a specific histone demethylase by identifying and engineering a conserved phenylalanine residue, which acts as a gatekeeper in the KDM4 subfamily, to sensitize the enzyme toward a novel set of αKG derivatives. The orthogonal pairs developed herein will serve as probes to study the role of degree-specific lysine demethylation in mammalian gene expression. Furthermore, this approach to overcome active site degeneracy is expected to have general application among all human αKG-dependent dioxygenases.


Assuntos
Dioxigenases , Histona Desmetilases , Animais , Humanos , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Lisina/metabolismo , Histona Desmetilases com o Domínio Jumonji/química , Alelos , Dioxigenases/genética , Ácidos Cetoglutáricos , Mamíferos/genética , Mamíferos/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa