RESUMO
The quantification and characterization of aggregated α-synuclein in clinical samples offer immense potential toward diagnosing, treating, and better understanding neurodegenerative synucleinopathies. Here, we developed digital seed amplification assays to detect single α-synuclein aggregates by partitioning the reaction into microcompartments. Using pre-formed α-synuclein fibrils as reaction seeds, we measured aggregate concentrations as low as 4 pg/mL. To improve our sensitivity, we captured aggregates on antibody-coated magnetic beads before running the amplification reaction. By first characterizing the pre-formed fibrils with transmission electron microscopy and size exclusion chromatography, we determined the specific aggregates targeted by each assay platform. Using brain tissue and cerebrospinal fluid samples collected from patients with Parkinson's Disease and multiple system atrophy, we demonstrated that the assay can detect endogenous pathological α-synuclein aggregates. Furthermore, as another application for these assays, we studied the inhibition of α-synuclein aggregation in the presence of small-molecule inhibitors and used a custom image analysis pipeline to quantify changes in aggregate growth and filament morphology.
Assuntos
Atrofia de Múltiplos Sistemas , Doença de Parkinson , Sinucleinopatias , Humanos , alfa-Sinucleína , AnticorposRESUMO
BACKGROUND: Skin biopsy is a potential tool for the premortem confirmation of an α-synucleinopathy. OBJECTIVE: The aim was to assess the aggregation assay real-time quaking-induced conversion (RT-QuIC) of skin biopsy lysates to confirm isolated rapid eye movement sleep behavior disorder (iRBD) as an α-synucleinopathy. METHODS: Skin biopsies of patients with iRBD, Parkinson's disease (PD), and controls were analyzed using RT-QuIC and immunohistochemical detection of phospho-α-synuclein. RESULTS: α-Synuclein aggregation was detected in 97.4% of iRBD patients (78.4% of iRBD biopsies), 87.2% of PD patients (70% of PD biopsies), and 13% of controls (7.9% of control biopsies), with a higher seeding activity in iRBD compared to PD. RT-QuIC was more sensitive but less specific than immunohistochemistry. CONCLUSIONS: Dermal RT-QuIC is a sensitive method to detect α-synuclein aggregation in iRBD, and high seeding activity may indicate a strong involvement of dermal nerve fibers in these patients. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Assuntos
Doença de Parkinson , Transtorno do Comportamento do Sono REM , Sinucleinopatias , Humanos , alfa-Sinucleína , Sinucleinopatias/diagnóstico , Transtorno do Comportamento do Sono REM/diagnóstico , Transtorno do Comportamento do Sono REM/patologia , Doença de Parkinson/diagnóstico , Doença de Parkinson/patologia , BiópsiaRESUMO
The development of new neurotherapeutics depends on appropriate animal models being chosen in preclinical studies. The cuprizone model is an effective tool for studying demyelination and remyelination processes in the brain, but blood-brain barrier (BBB) integrity in the cuprizone model is still a topic for debate. Several publications claim that the BBB remains intact during cuprizone-induced demyelination; others demonstrate results that could explain the increased BBB permeability. In this study, we aim to analyze the permeability of the BBB for different macromolecules, particularly antibody conjugates, in a cuprizone-induced model of demyelination. We compared the traditional approach using Evans blue injection with subsequent dye extraction and detection of antibody conjugates using magnetic resonance imaging (MRI) and confocal microscopy to analyze BBB permeability in the cuprizone model. First, we validated our model of demyelination by performing T2-weighted MRI, diffusion tensor imaging, quantitative rt-PCR to detect changes in mRNA expression of myelin basic protein and proteolipid protein, and Luxol fast blue histological staining of myelin. Intraperitoneal injection of Evans blue did not result in any differences between the fluorescent signal in the brain of healthy and cuprizone-treated mice (IVIS analysis with subsequent dye extraction). In contrast, intravenous injection of antibody conjugates (anti-GFAP or non-specific IgG) after 4 weeks of a cuprizone diet demonstrated accumulation in the corpus callosum of cuprizone-treated mice both by contrast-enhanced MRI (for gadolinium-labeled antibodies) and by fluorescence microscopy (for Alexa488-labeled antibodies). Our results suggest that the methods with better sensitivity could detect the accumulation of macromolecules (such as fluorescent-labeled or gadolinium-labeled antibody conjugates) in the brain, suggesting a local BBB disruption in the demyelinating area. These findings support previous investigations that questioned BBB integrity in the cuprizone model and demonstrate the possibility of delivering antibody conjugates to the corpus callosum of cuprizone-treated mice.
Assuntos
Doenças Desmielinizantes , Imunoconjugados , Animais , Camundongos , Cuprizona/toxicidade , Barreira Hematoencefálica , Imagem de Tensor de Difusão , Azul Evans , Gadolínio , Anticorpos , Corantes , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/diagnóstico por imagemRESUMO
Pathological aggregates of alpha-synuclein in peripheral dermal nerve fibers can be detected in patients with idiopathic Parkinson's disease and multiple system atrophy. This study combines skin biopsy staining for p-alpha-synuclein depositions and radionuclide imaging of the heart with [123I]-metaiodobenzylguanidine to explore peripheral denervation in both diseases. To this purpose, 42 patients with a clinical diagnosis of Parkinson's disease or multiple system atrophy were enrolled. All patients underwent a standardized clinical work-up including neurological evaluation, neurography, and blood samples. Skin biopsies were obtained from the distal and proximal leg, back, and neck for immunofluorescence double labeling with anti-p-alpha-synuclein and anti-PGP9.5. All patients underwent myocardial [123I]-metaiodobenzylguanidine scintigraphy. Dermal p-alpha-synuclein was observed in 47.6% of Parkinson's disease patients and was mainly found in autonomic structures. 81.0% of multiple system atrophy patients had deposits with most of cases in somatosensory fibers. The [123I]-metaiodobenzylguanidine heart-to-mediastinum ratio was lower in Parkinson's disease than in multiple system atrophy patients (1.94 ± 0.63 vs. 2.91 ± 0.96; p < 0.0001). Irrespective of the diagnosis, uptake was lower in patients with than without p-alpha-synuclein in autonomic structures (1.42 ± 0.51 vs. 2.74 ± 0.83; p < 0.0001). Rare cases of Parkinson's disease with p-alpha-synuclein in somatosensory fibers and multiple system atrophy patients with deposits in autonomic structures or both fiber types presented with clinically overlapping features. In conclusion, this study suggests that alpha-synuclein contributes to peripheral neurodegeneration and mediates the impairment of cardiac sympathetic neurons in patients with synucleinopathies. Furthermore, it indicates that Parkinson's disease and multiple system atrophy share pathophysiologic mechanisms of peripheral nervous system dysfunction with a clinical overlap.
Assuntos
Fibras Autônomas Pós-Ganglionares/patologia , Coração/diagnóstico por imagem , Atrofia de Múltiplos Sistemas/patologia , Doença de Parkinson/patologia , Sistema Nervoso Periférico/patologia , Pele/patologia , alfa-Sinucleína/metabolismo , 3-Iodobenzilguanidina , Adulto , Idoso , Feminino , Coração/inervação , Humanos , Masculino , Pessoa de Meia-Idade , Atrofia de Múltiplos Sistemas/diagnóstico por imagem , Atrofia de Múltiplos Sistemas/metabolismo , Fibras Nervosas/metabolismo , Fibras Nervosas/patologia , Condução Nervosa , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/metabolismo , Sistema Nervoso Periférico/diagnóstico por imagem , Sistema Nervoso Periférico/metabolismo , Fosforilação , Cintilografia , Compostos Radiofarmacêuticos , Pele/inervaçãoRESUMO
ABSTRACT: In our prospective cross-sectional study, we comprehensively characterized Parkinson disease (PD)-related pain in monocentrically recruited patients with PD using standardized tools of pain assessment and categorization. One hundred fifty patients were systematically interviewed and filled in questionnaires for pain, depression, motor, and nonmotor symptoms. Patients with PD-related pain (PD pain), patients without PD-related pain (no PD pain), and patients without pain (no pain) were compared. Pain was present in 108/150 (72%) patients with PD, and 90/150 (60%) patients were classified as having PD-related pain. Most of the patients with PD (67/90, 74%) reported nociceptive pain, which was episodic (64/90, 71%), primarily nocturnal (56/90, 62%), and manifested as cramps (32/90, 36%). Parkinson disease-related pain was most frequently located in the feet (51/90, 57%), mainly at the toe joints (22/51, 43%). 38/90 (42%) patients with PD-related pain received analgesic medication with nonsteroidal anti-inflammatory drugs being the most frequently used (31/42, 82%) and opioids most effective (70% pain reduction of individual maximum pain intensities, range 22%-100%, confidence interval 50%-90%). All patients received oral PD treatment; however, levodopa equivalent dose showed no correlation with mean pain intensities (Spearman ρ = 0.027, P > 0.05). Our data provide a comprehensive analysis of PD-related pain, giving evidence for mainly non-neuropathic podalgia, which bears the potential to rethink assessment and analgesic treatment of pain in PD in clinical practice.
Assuntos
Medição da Dor , Dor , Doença de Parkinson , Fenótipo , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/fisiopatologia , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Estudos Transversais , Medição da Dor/métodos , Dor/etiologia , Dor/diagnóstico , Estudos Prospectivos , Inquéritos e Questionários , Idoso de 80 Anos ou maisRESUMO
The heterogeneity of protein-rich inclusions and its significance in neurodegeneration is poorly understood. Standard patient-derived iPSC models develop inclusions neither reproducibly nor in a reasonable time frame. Here, we developed screenable iPSC "inclusionopathy" models utilizing piggyBac or targeted transgenes to rapidly induce CNS cells that express aggregation-prone proteins at brain-like levels. Inclusions and their effects on cell survival were trackable at single-inclusion resolution. Exemplar cortical neuron α-synuclein inclusionopathy models were engineered through transgenic expression of α-synuclein mutant forms or exogenous seeding with fibrils. We identified multiple inclusion classes, including neuroprotective p62-positive inclusions versus dynamic and neurotoxic lipid-rich inclusions, both identified in patient brains. Fusion events between these inclusion subtypes altered neuronal survival. Proteome-scale α-synuclein genetic- and physical-interaction screens pinpointed candidate RNA-processing and actin-cytoskeleton-modulator proteins like RhoA whose sequestration into inclusions could enhance toxicity. These tractable CNS models should prove useful in functional genomic analysis and drug development for proteinopathies.
Assuntos
Corpos de Inclusão , Células-Tronco Pluripotentes Induzidas , alfa-Sinucleína , Células-Tronco Pluripotentes Induzidas/metabolismo , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Humanos , Corpos de Inclusão/metabolismo , Corpos de Inclusão/patologia , Sinucleinopatias/metabolismo , Sinucleinopatias/patologia , Sinucleinopatias/genética , Neurônios/metabolismo , Neurônios/patologia , Encéfalo/metabolismo , Encéfalo/patologiaRESUMO
Immune checkpoint blockade therapy is beneficial and even curative for some cancer patients. However, the majority don't respond to immune therapy. Across different tumor types, pre-existing T cell infiltrates predict response to checkpoint-based immunotherapy. Based on in vitro pharmacological studies, mouse models and analyses of human melanoma patients, we show that the cytokine GDF-15 impairs LFA-1/ß2-integrin-mediated adhesion of T cells to activated endothelial cells, which is a pre-requisite of T cell extravasation. In melanoma patients, GDF-15 serum levels strongly correlate with failure of PD-1-based immune checkpoint blockade therapy. Neutralization of GDF-15 improves both T cell trafficking and therapy efficiency in murine tumor models. Thus GDF-15, beside its known role in cancer-related anorexia and cachexia, emerges as a regulator of T cell extravasation into the tumor microenvironment, which provides an even stronger rationale for therapeutic anti-GDF-15 antibody development.
Assuntos
Melanoma , Linfócitos T , Humanos , Camundongos , Animais , Linfócitos T/patologia , Antígeno-1 Associado à Função Linfocitária , Células Endoteliais/patologia , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Melanoma/patologia , Imunoterapia , Microambiente TumoralRESUMO
BACKGROUND: Pain is a common non-motor symptom of Parkinson`s disease (PD), however, its pathomechanism remains elusive. OBJECTIVE: We aimed to investigate the local gene expression of selected proinflammatory mediators in patients with PD and correlated our data with patients`pain phenotype. METHODS: We recruited 30 patients with PD and 30 healthy controls. Pain intensity of patients was assessed using the Numeric Rating Scale (NRS) and patients were stratified into PD pain (NRS≥4) and PD No Pain (NRS<4) subgroups. Skin punch biopsies were immunoassayed for protein-gene product 9.5 as a pan-neuronal marker and intraepidermal nerve fiber density (IEFND). Quantitative real-time polymerase chain reaction (qRT-PCR) analysis was performed to assess the gene expression of inflammatory mediators in the skin compared to controls. RESULTS: Patients with PD had lower distal IENFD compared to healthy controls. In skin samples, IL-2 (p<0.001) and TNF-α (p<0.01) were expressed higher in PD patients compared to controls. IL-1ß (p<0.05) was expressed higher in the PD pain group compared to healthy controls. PD patients with pain receiving analgesics had a lower expression of TNF-α (p<0.05) in the skin compared to those not receiving treatment. CONCLUSIONS: Our data suggest the occurrence of a local, peripheral inflammatory response in the skin in PD, but do not support this being a relevant factor contributing to pain in PD.
Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/genética , Doença de Parkinson/diagnóstico , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Pele/metabolismo , Dor/patologia , Medição da DorRESUMO
Skin α-synuclein deposition is considered a potential biomarker for Parkinson's disease (PD). Real-time quaking-induced conversion (RT-QuIC) is a novel, ultrasensitive, and efficient seeding assay that enables the detection of minute amounts of α-synuclein aggregates. We aimed to determine the diagnostic accuracy, reliability, and reproducibility of α-synuclein RT-QuIC assay of skin biopsy for diagnosing PD and to explore its correlation with clinical markers of PD in a two-center inter-laboratory comparison study. Patients with clinically diagnosed PD (n = 34), as well as control subjects (n = 30), underwent skin punch biopsy at multiple sites (neck, lower back, thigh, and lower leg). The skin biopsy samples (198 in total) were divided in half to be analyzed by RT-QuIC assay in two independent laboratories. The α-synuclein RT-QuIC assay of multiple skin biopsies supported the clinical diagnosis of PD with a diagnostic accuracy of 88.9% and showed a high degree of inter-rater agreement between the two laboratories (92.2%). Higher α-synuclein seeding activity in RT-QuIC was shown in patients with longer disease duration and more advanced disease stage and correlated with the presence of REM sleep behavior disorder, cognitive impairment, and constipation. The α-synuclein RT-QuIC assay of minimally invasive skin punch biopsy is a reliable and reproducible biomarker for Parkinson's disease. Moreover, α-synuclein RT-QuIC seeding activity in the skin may serve as a potential indicator of progression as it correlates with the disease stage and certain non-motor symptoms.
RESUMO
Patients with isolated rapid-eye-movement sleep behaviour disorder (RBD) are commonly regarded as being in the early stages of a progressive neurodegenerative disease involving α-synuclein pathology, such as Parkinson's disease, dementia with Lewy bodies, or multiple system atrophy. Abnormal α-synuclein deposition occurs early in the neurodegenerative process across the central and peripheral nervous systems and might precede the appearance of motor symptoms and cognitive decline by several decades. These findings provide the rationale to develop reliable biomarkers that can better predict conversion to clinically manifest α-synucleinopathies. In addition, biomarkers of disease progression will be essential to monitor treatment response once disease-modifying therapies become available, and biomarkers of disease subtype will be essential to enable prediction of which subtype of α-synucleinopathy patients with isolated RBD might develop.
Assuntos
Biomarcadores , Transtorno do Comportamento do Sono REM/diagnóstico , Sinucleinopatias/diagnóstico , Progressão da Doença , Humanos , Prognóstico , Transtorno do Comportamento do Sono REM/complicações , Sinucleinopatias/etiologia , alfa-SinucleínaRESUMO
IMPORTANCE: Deposition of the pathological α-synuclein (αSynP) in the brain is the hallmark of synucleinopathies, including Parkinson disease (PD), Lewy body dementia (LBD), and multiple system atrophy (MSA). Whether real-time quaking-induced conversion (RT-QuIC) and protein misfolding cyclic amplification (PMCA) assays can sensitively detect skin biomarkers for PD and non-PD synucleinopathies remains unknown. OBJECTIVE: To develop sensitive and specific skin biomarkers for antemortem diagnosis of PD and other synucleinopathies. DESIGN, SETTING, AND PARTICIPANTS: This retrospective and prospective diagnostic study evaluated autopsy and biopsy skin samples from neuropathologically and clinically diagnosed patients with PD and controls without PD. Autopsy skin samples were obtained at 3 medical centers from August 2016 to September 2019, and biopsy samples were collected from 3 institutions from August 2018 to November 2019. Based on neuropathological and clinical diagnoses, 57 cadavers with synucleinopathies and 73 cadavers with nonsynucleinopathies as well as 20 living patients with PD and 21 living controls without PD were included. Specifically, cadavers and participants had PD, LBD, MSA, Alzheimer disease, progressive supranuclear palsy, or corticobasal degeneration or were nonneurodegenerative controls (NNCs). A total of 8 approached biopsy participants either refused to participate in or were excluded from this study due to uncertain clinical diagnosis. Data were analyzed from September 2019 to April 2020. MAIN OUTCOMES AND MEASURES: Skin αSynP seeding activity was analyzed by RT-QuIC and PMCA assays. RESULTS: A total of 160 autopsied skin specimens from 140 cadavers (85 male cadavers [60.7%]; mean [SD] age at death, 76.8 [10.1] years) and 41 antemortem skin biopsies (27 male participants [66%]; mean [SD] age at time of biopsy, 65.3 [9.2] years) were analyzed. RT-QuIC analysis of αSynP seeding activity in autopsy abdominal skin samples from 47 PD cadavers and 43 NNCs revealed 94% sensitivity (95% CI, 85-99) and 98% specificity (95% CI, 89-100). As groups, RT-QuIC also yielded 93% sensitivity (95% CI, 85-97) and 93% specificity (95% CI, 83-97) among 57 cadavers with synucleinopathies (PD, LBD, and MSA) and 73 cadavers without synucleinopathies (Alzheimer disease, progressive supranuclear palsy, corticobasal degeneration, and NNCs). PMCA showed 82% sensitivity (95% CI, 76-88) and 96% specificity (95% CI, 85-100) with autopsy abdominal skin samples from PD cadavers. From posterior cervical and leg skin biopsy tissues from patients with PD and controls without PD, the sensitivity and specificity were 95% (95% CI, 77-100) and 100% (95% CI, 84-100), respectively, for RT-QuIC and 80% (95% CI, 49-96) and 90% (95% CI, 60-100) for PMCA. CONCLUSIONS AND RELEVANCE: This study provides proof-of-concept that skin αSynP seeding activity may serve as a novel biomarker for antemortem diagnoses of PD and other synucleinopathies.
RESUMO
Biomarkers are strongly needed for diagnostic surveillance of patients with metastatic melanoma. On the basis of its known association with tumor metastasis and its ability to induce cancer cachexia, we investigated serum levels of growth and differentiation factor 15 (sGDF-15) as a marker for overall survival (OS). sGDF-15 was retrospectively measured by ELISA in 761 samples obtained at distinct time points during routine clinical care of patients with stage III/IV melanoma. In the entire cohort, sGDF-15 ≥ 1.5 ng/ml was strongly associated with reduced OS after assessment. Subsequent analyses were performed separately for tumor-free stage III, tumor-free stage IV, and unresectable stage IV patients. For patients with unresectable distant metastasis (n = 206), sGDF-15 was independently associated with OS when considered together with the M-category and superior to serum level of lactate dehydrogenase. Analysis in tumor-free stage III patients during routine surveillance (n = 468) revealed sGDF-15 to be associated with OS and an independent factor when considered together with S100B and the pattern of locoregional metastasis. Only in tumor-free stage IV patients (n = 87) sGDF-15 was not associated with OS. sGDF-15 should thus be further validated as a marker for early detection of recurrence in stage III patients and as a prognostic or predictive marker particularly in the context newly available treatments in unresectable stage IV patients.