Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Arch Microbiol ; 205(5): 188, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37052710

RESUMO

The excessive use of pretilachlor (a chloroacetamide herbicide) has raised concern throughout the world as it has been reported as highly toxic. The present study deals with isolating and screening pretilachlor degrading fungal strains. The strains Aspergillus ficuum (AJN2) and Aspergillus sp. (PDF1) isolated using enrichment technique were able to degrade 79% and 73% of pretilachlor respectively as analyzed using HPLC. Further, the immobilization technique was used in the study the pretilachlor degradation ability of the isolated strains. The immobilized spores of the strains AJN2 and PDF1 mineralized 84% and 95% of pretilachlor respectively. The degradation dynamics study revealed that the DT50 value of the herbicide was reduced to 2.4 d in aqueous medium due to the enhanced enzymatic activity. The enzymatic study showed high lignin peroxidase and manganese peroxidase activity by the strains AJN2 and PDF1 respectively. The study confirmed the efficient degradation of pretilachlor by Aspergillus ficuum (AJN2).


Assuntos
Biomineralização , Herbicidas , Herbicidas/metabolismo , Acetanilidas
2.
J Environ Sci Health B ; 58(6): 489-499, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37408480

RESUMO

Pretilachlor is one of the widely used chloroacetamide herbicides in Asian countries to control weeds in the rice field. The extensive use of herbicides has caused major concern among scientists throughout the world. Therefore, it is essential to develop an efficient method for the remediation of pretilachlor and its harmful by-products from contaminated surfaces. Mycoremediation is known to play a key role in the removal of various environmental contaminants. Hence, in the present study, strain AJN2 Aspergillus ficuum was isolated from a paddy field that was in continuous exposure to pretilachlor for over a decade. The degradation studies showed that the strain was efficiently able to degrade 73% of pretilachlor in an aqueous medium within 15 days of incubation and 70% of its major metabolite PME (2-methyl-6-ethylalanine). The GC/MS profile revealed the formation of aldehyde as the end product of degradation which was confirmed through the infrared fingerprint of the degradation sample. The ligninolytic enzyme activity studies showed that the lignin peroxidase enzyme system could be responsible for the degradation of pretilachlor and its major metabolite. The results highlight that the strain AJN2 A. ficuum could be a potential strain for the bioremediation of pretilachlor from the contaminated areas.


Assuntos
Herbicidas , Herbicidas/metabolismo , Acetanilidas , Biodegradação Ambiental
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa