Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 16(2): 155, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26821029

RESUMO

The zero-potential scanning circuit is widely used as read-out circuit for resistive sensor arrays because it removes a well known problem: crosstalk current. The zero-potential scanning circuit can be divided into two groups based on type of row drivers. One type is a row driver using digital buffers. It can be easily implemented because of its simple structure, but we found that it can cause a large read-out error which originates from on-resistance of the digital buffers used in the row driver. The other type is a row driver composed of operational amplifiers. It, very accurately, reads the sensor resistance, but it uses a large number of operational amplifiers to drive rows of the sensor array; therefore, it severely increases the power consumption, cost, and system complexity. To resolve the inaccuracy or high complexity problems founded in those previous circuits, we propose a new row driver which uses only one operational amplifier to drive all rows of a sensor array with high accuracy. The measurement results with the proposed circuit to drive a 4 × 4 resistor array show that the maximum error is only 0.1% which is remarkably reduced from 30.7% of the previous counterpart.

2.
Sensors (Basel) ; 16(4)2016 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-27070626

RESUMO

In this article, we report on a novel diaphragm-type tactile pressure sensor that produces stepwise output currents depending on varying low contact pressures. When contact pressures are applied to the stepped output tactile sensor (SOTS), the sensor's suspended diaphragm makes contact with the substrate, which completes a circuit by connecting resistive current paths. Then the contact area, and therefore the number of current paths, would determine the stepped output current produced. This mechanism allows SOTS to have high signal-to-noise ratio (>20 dB) in the 3-500 Hz frequency range at contact pressures below 15 kPa. Moreover, since the sensor's operation does not depend on a material's pressure-dependent electrical properties, the SOTS is able to demonstrate high reproducibility and reliability. By forming a 4 × 4 array of SOTS with a surface bump structure, we demonstrated shear sensing as well as surface (1 × 1 cm²) pressure mapping capabilities.

3.
Indian J Microbiol ; 56(4): 467-475, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27784944

RESUMO

2,3-Dihydroxybiphenyl 1,2-dioxygenase (2,3-DBDO) is an extradiol-type dioxygenase that involved in third step of biphenyl degradation pathway. The nucleotide sequence of the bphC gene from Comamonas sp. SMN4, which encodes 2,3-DBDO with His-tag, was cloned into a plasmid pQE30 in E. coli. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of the purified active 2,3-DBDO showed a single band around 33 kDa, corresponding the molecular mass of 2,3-DBDO subunit. Two fractions around 170 and 100 kDa were separated in gel filtration chromatography, but only former one (the fraction of 170 kDa) has 2,3-DBDO activity. The 2,3-DBDO was reported as the polymeric protein consisted of eight subunits. However, the fraction corresponding octameric protein of 2,3-DBDO was not found in the gel filtration chromatography. The 2,3-DBDO was exhibited the maximum activity at pH 9.0 and was stable at pH 8.0, relatively. The circular dichroism (CD) data showed that 2,3-DBDO had an α-helical folding structures at neutral pHs ranged from pH 4.5 to pH 9.0. However, this high stable folding structure was converted to unfolded structure in acidic region (pH 2.5) or in high pH (pH 12.0). The enzyme was thermally stable and active up to 40 °C. The conformational data by CD spectra were consistent with the stability of 2,3-DBDO by checking the activity. The binding affinity (Km ) for 2,3-dihydroxybiphenyl, 3-metylcatechol, 4-methylcatechol and catechol was 11.7, 24 µM, 50 mM and 625 µM, respectively.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa