Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
J Neurosci Res ; 102(4): e25323, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38553948

RESUMO

Previously, we reported that prenatal exposure to high corticosterone induced attention-deficit hyperactivity disorder (ADHD)-like behaviors with cognitive deficits after weaning. In the present study, cellular mechanisms underlying cortisol-induced cognitive dysfunction were investigated using rat pups (Corti.Pups) born from rat mothers that were repetitively injected with corticosterone during pregnancy. In results, Corti.Pups exhibited the failure of behavioral memory formation in the Morris water maze (MWM) test and the incomplete long-term potentiation (LTP) of hippocampal CA1 neurons. Additionally, glutamatergic excitatory postsynaptic currents (EPSCs) were remarkably suppressed in Corti.Pups compared to normal rat pups. Incomplete LTP and weaker EPSCs in Corti.Pups were attributed to the delayed postsynaptic development of CA1 neurons, showing a higher expression of NR2B subunits and lower expression of PSD-95 and BDNF. These results indicated that the prenatal treatment with corticosterone to elevate cortisol level might potently downregulate the BDNF-mediated signaling critical for the synaptic development of hippocampal CA1 neurons during brain development, and subsequently, induce learning and memory impairment. Our findings suggest a possibility that the prenatal dysregulation of cortisol triggers the epigenetic pathogenesis of neurodevelopmental psychiatric disorders, such as ADHD and autism.


Assuntos
Corticosterona , Hidrocortisona , Humanos , Gravidez , Feminino , Ratos , Animais , Corticosterona/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Aprendizagem em Labirinto/fisiologia , Hipocampo/metabolismo , Potenciação de Longa Duração , Neurônios/metabolismo , Transtornos da Memória/metabolismo
2.
BMC Urol ; 24(1): 65, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38515108

RESUMO

BACKGROUND: This work aimed to identify a method to achieve improved stone targeting and safety in shockwave lithotripsy by accounting for respiration. METHODS: We set up an electromotive device simulating renal movement during respiration to place artificial stones within the phantom gel, measuring stone weight changes before and after shockwave exposure and the cavitation damage. We conducted clinical trials using respiratory masks and sensors to monitor and analyze patient respiration during shockwave lithotripsy. RESULTS: The in vitro efficiency of lithotripsy was higher when adjusted for respiration than when respiration was not adjusted for. Slow respiration showed the best efficiency with higher hit rates when not adjusted for respiration. Cavitation damage was also lowest during slow respiration. The clinical study included 52 patients. Respiratory regularity was maintained above 90% in regular respiration. When respiration was regular, the lithotripsy rate was about 65.6%, which stayed at about 40% when respiration was irregular. During the lithotripsy, the participants experienced various events, such as sleep, taking off their masks, talking, movement, coughing, pain, nervousness, and hyperventilation. The generation of shockwaves based on respiratory regularity could reduce pain in patients. CONCLUSION: These results suggest a more accurate lithotripsy should be performed according to respiratory regularity.


Assuntos
Cálculos Renais , Litotripsia , Humanos , Cálculos Renais/terapia , Rim , Litotripsia/métodos , Projetos de Pesquisa , Imagens de Fantasmas , Dor , Resultado do Tratamento
3.
Int J Mol Sci ; 22(13)2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34281152

RESUMO

Non-small cell lung cancer (NSCLC) is one of the leading causes of cancer-related mortality; thus, therapeutic targets continue to be developed. Anoctamin1 (ANO1), a novel drug target considered for the treatment of NSCLC, is a Ca2+-activated chloride channel (CaCC) overexpressed in various carcinomas. It plays an important role in the development of cancer; however, the role of ANO1 in NSCLC is unclear. In this study, diethylstilbestrol (DES) was identified as a selective ANO1 inhibitor using high-throughput screening. We found that DES inhibited yellow fluorescent protein (YFP) fluorescence reduction caused by ANO1 activation but did not inhibit cystic fibrosis transmembrane conductance regulator channel activity or P2Y activation-related cytosolic Ca2+ levels. Additionally, electrophysiological analyses showed that DES significantly reduced ANO1 channel activity, but it more potently reduced ANO1 protein levels. DES also inhibited the viability and migration of PC9 cells via the reduction in ANO1, phospho-ERK1/2, and phospho-EGFR levels. Moreover, DES induced apoptosis by increasing caspase-3 activity and PARP-1 cleavage in PC9 cells, but it did not affect the viability of hepatocytes. These results suggest that ANO1 is a crucial target in the treatment of NSCLC, and DES may be developed as a potential anti-NSCLC therapeutic agent.


Assuntos
Anoctamina-1/antagonistas & inibidores , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Dietilestilbestrol/farmacologia , Proteínas de Neoplasias/antagonistas & inibidores , Anoctamina-1/metabolismo , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Dietilestilbestrol/metabolismo , Humanos , Neoplasias Pulmonares , Proteínas de Neoplasias/metabolismo , Transdução de Sinais
4.
Int J Mol Sci ; 21(7)2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32230901

RESUMO

Drug resistance in epithelial ovarian cancer (EOC) is reportedly attributed to the existence of cancer stem cells (CSC), because in most cancers, CSCs still remain after chemotherapy. To overcome this limitation, novel therapeutic strategies are required to prevent cancer recurrence and chemotherapy-resistant cancers by targeting cancer stem cells (CSCs). We screened an FDA-approved compound library and found four voltage-gated calcium channel blockers (manidipine, lacidipine, benidipine, and lomerizine) that target ovarian CSCs. Four calcium channel blockers (CCBs) decreased sphere formation, viability, and proliferation, and induced apoptosis in ovarian CSCs. CCBs destroyed stemness and inhibited the AKT and ERK signaling pathway in ovarian CSCs. Among calcium channel subunit genes, three L- and T-type calcium channel genes were overexpressed in ovarian CSCs, and downregulation of calcium channel genes reduced the stem-cell-like properties of ovarian CSCs. Expressions of these three genes are negatively correlated with the survival rate of patient groups. In combination therapy with cisplatin, synergistic effect was shown in inhibiting the viability and proliferation of ovarian CSCs. Moreover, combinatorial usage of manidipine and paclitaxel showed enhanced effect in ovarian CSCs xenograft mouse models. Our results suggested that four CCBs may be potential therapeutic drugs for preventing ovarian cancer recurrence.


Assuntos
Anti-Hipertensivos/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio/efeitos dos fármacos , Canais de Cálcio/metabolismo , Células-Tronco Neoplásicas/metabolismo , Animais , Apoptose/efeitos dos fármacos , Carcinoma Epitelial do Ovário , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/farmacologia , Di-Hidropiridinas/farmacologia , Reposicionamento de Medicamentos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Células-Tronco Neoplásicas/efeitos dos fármacos , Nitrobenzenos , Neoplasias Ovarianas , Paclitaxel/farmacologia , Piperazinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Microambiente Tumoral/efeitos dos fármacos
5.
Proc Natl Acad Sci U S A ; 110(2): 725-30, 2013 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-23269831

RESUMO

Despite the pivotal functions of the NMDA receptor (NMDAR) for neural circuit development and synaptic plasticity, the molecular mechanisms underlying the dynamics of NMDAR trafficking are poorly understood. The cell adhesion molecule neuroligin-1 (NL1) modifies NMDAR-dependent synaptic transmission and synaptic plasticity, but it is unclear whether NL1 controls synaptic accumulation or function of the receptors. Here, we provide evidence that NL1 regulates the abundance of NMDARs at postsynaptic sites. This function relies on extracellular, NL1 isoform-specific sequences that facilitate biochemical interactions between NL1 and the NMDAR GluN1 subunit. Our work uncovers NL1 isoform-specific cis-interactions with ionotropic glutamate receptors as a key mechanism for controlling synaptic properties.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Plasticidade Neuronal/fisiologia , Receptores Ionotrópicos de Glutamato/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Análise de Variância , Animais , Western Blotting , Maleato de Dizocilpina , Imunoprecipitação , Microscopia Confocal , Microscopia Imunoeletrônica , Ratos , Estatísticas não Paramétricas
6.
Front Pharmacol ; 15: 1382787, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38659592

RESUMO

Background: Prostate cancer and non-small cell lung cancer (NSCLC) present significant challenges in the development of effective therapeutic strategies. Hormone therapies for prostate cancer target androgen receptors and prostate-specific antigen markers. However, treatment options for prostatic small-cell neuroendocrine carcinoma are limited. NSCLC, on the other hand, is primarily treated with epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors but exhibits resistance. This study explored a novel therapeutic approach by investigating the potential anticancer properties of vitekwangin B, a natural compound derived from Vitex trifolia. Methods: Vitekwangin B was chromatographically isolated from the fruits of V. trifolia. ANO1 protein levels in prostate cancer and NSCLC cells were verified and evaluated again after vitekwangin B treatment. Results: Vitekwangin B did not inhibit anoctamin1 (ANO1) channel function but significantly reduced ANO1 protein levels. These results demonstrate that vitekwangin B effectively inhibited cancer cell viability and induced apoptosis in prostate cancer and NSCLC cells. Moreover, it exhibited minimal toxicity to liver cells and did not affect hERG channel activity, making it a promising candidate for further development as an anticancer drug. Conclusion: Vitekwangin B may offer a new direction for cancer therapy by targeting ANO1 protein, potentially improving treatment outcomes in patients with prostate cancer and NSCLC. Further research is needed to explore its full potential and overcome existing drug resistance challenges.

7.
Complement Ther Med ; 82: 103035, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38513746

RESUMO

BACKGROUND AND PURPOSE: This parallel, single-center, pragmatic, randomized controlled study aimed to investigate the effectiveness and safety of motion style acupuncture treatment (MSAT; a combination of acupuncture and Doin therapy) to reduce pain and improve the functional disability of patients with acute low back pain (aLBP) due to road traffic accidents. MATERIALS AND METHODS: Ninety-six patients with aLBP admitted to the Haeundae Jaseng Hospital of Korean Medicine in South Korea due to traffic accidents were treated with integrative Korean medicine (IKM) with additional 3-day MSAT sessions during hospitalization (MSAT group, 48 patients) or without (control group, 48 patients), and followed up for 90 days. RESULTS: The mean numeric rating scale (NRS) scores of low back pain (LBP) of the MSAT and control groups were both 6.7 (95% confidence interval [CI]: 6.3, 7.1) at baseline. After completing the third round of all applicable treatment sessions (the primary endpoint in this study), the mean NRS scores of the MSAT and control groups were 3.76 (95% CI: 3.54, 3.99) and 5.32 (95% CI: 5.09, 5.55), respectively. The difference in the mean NRS score between the two groups was 1.56 (95% CI: 1.25, 1.87). CONCLUSION: IKM treatment combined with MSAT can reduce pain and improve the range of motion of patients with aLBP. TRIAL REGISTRATION: This trial is registered at ClinicalTrial.gov (NCT04956458).


Assuntos
Terapia por Acupuntura , Dor Lombar , Humanos , Dor Lombar/terapia , Masculino , Feminino , Terapia por Acupuntura/métodos , Pessoa de Meia-Idade , Adulto , República da Coreia , Pacientes Internados , Resultado do Tratamento , Medição da Dor , Região Lombossacral
8.
J Neurosci ; 32(9): 2988-97, 2012 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-22378872

RESUMO

Neuregulin 1 (NRG-1) and its receptor ErbB4 have emerged as biologically plausible schizophrenia risk factors, modulators of GABAergic and dopaminergic neurotransmission, and as potent regulators of glutamatergic synaptic plasticity. NRG-1 acutely depotentiates LTP in hippocampal slices, and blocking ErbB kinase activity inhibits LTP reversal by theta-pulse stimuli (TPS), an activity-dependent reversal paradigm. NRG-1/ErbB4 signaling in parvalbumin (PV) interneurons has been implicated in inhibitory transmission onto pyramidal neurons. However, the role of ErbB4, in particular in PV interneurons, for LTP reversal has not been investigated. Here we show that ErbB4-null (ErbB4(-/-)) and PV interneuron-restricted mutant (PV-Cre;ErbB4) mice, as well as NRG-1 hypomorphic mice, exhibit increased hippocampal LTP. Moreover, both ErbB4(-/-) and PV-Cre;ErbB4 mice lack TPS-mediated LTP reversal. A comparative behavioral analysis of full and conditional ErbB4 mutant mice revealed that both exhibit hyperactivity in a novel environment and deficits in prepulse inhibition of the startle response. Strikingly, however, only ErbB4(-/-) mice exhibit reduced anxiety-like behaviors in the elevated plus maze task and deficits in cued and contextual fear conditioning. These results suggest that aberrant NRG-1/ErbB4 signaling in PV interneurons accounts for some but not all behavioral abnormalities observed in ErbB4(-/-) mice. Consistent with the observation that PV-Cre;ErbB4 mice exhibit normal fear conditioning, we find that ErbB4 is broadly expressed in the amygdala, largely by cells negative for PV. These findings are important to better understand ErbB4's role in complex behaviors and warrant further analysis of ErbB4 mutant mice lacking the receptor in distinct neuron types.


Assuntos
Receptores ErbB/fisiologia , Transtornos Mentais/metabolismo , Neuregulina-1/fisiologia , Plasticidade Neuronal/fisiologia , Transdução de Sinais/fisiologia , Sinapses/metabolismo , Animais , Medo/fisiologia , Medo/psicologia , Hipocampo/fisiologia , Potenciação de Longa Duração/fisiologia , Masculino , Aprendizagem em Labirinto/fisiologia , Transtornos Mentais/psicologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Inibição Neural/fisiologia , Técnicas de Cultura de Órgãos , Parvalbuminas/fisiologia , Receptor ErbB-4 , Reflexo de Sobressalto/fisiologia
9.
J Neurosci ; 32(16): 5678-5687, 2012 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-22514329

RESUMO

MicroRNAs (miRNAs) have recently come to be viewed as critical players that modulate a number of cellular features in various biological systems including the mature CNS by exerting regulatory control over the stability and translation of mRNAs. Despite considerable evidence for the regulatory functions of miRNAs, the identities of the miRNA species that are involved in the regulation of synaptic transmission and plasticity and the mechanisms by which these miRNAs exert functional roles remain largely unknown. In the present study, the expression of microRNA-188 (miR-188) was found to be upregulated by the induction of long-term potentiation (LTP). The protein level of neuropilin-2 (Nrp-2), one of the possible molecular targets for miR-188, was decreased during LTP induction. We also confirmed that the luciferase activity of the 3'-UTR of Nrp-2 was diminished by treatment with a miR-188 oligonucleotide but not with a scrambled miRNA oligonucleotide. Nrp-2 serves as a receptor for semaphorin 3F, which is a negative regulator of spine development and synaptic structure. In addition, miR-188 specifically rescued the reduction in dendritic spine density induced by Nrp-2 expression in hippocampal neurons from rat primary culture. Furthermore, miR-188 counteracted the decrease in the miniature EPSC frequency induced by Nrp-2 expression in hippocampal neurons from rat primary culture. These findings suggest that miR-188 serves to fine-tune synaptic plasticity by regulating Nrp-2 expression.


Assuntos
Dendritos/fisiologia , Regulação para Baixo/fisiologia , MicroRNAs/metabolismo , Plasticidade Neuronal/fisiologia , Neuropilina-2/metabolismo , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Análise de Variância , Animais , Animais Recém-Nascidos , Biofísica , Células Cultivadas , Espinhas Dendríticas/metabolismo , Regulação para Baixo/genética , Estimulação Elétrica/métodos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Antagonistas GABAérgicos/farmacologia , Perfilação da Expressão Gênica , Glicina/farmacologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hipocampo/citologia , Humanos , Técnicas In Vitro , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/genética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Plasticidade Neuronal/genética , Neurônios/citologia , Neuropilina-2/genética , Análise de Sequência com Séries de Oligonucleotídeos , Técnicas de Patch-Clamp , Picrotoxina/farmacologia , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Estricnina/farmacologia , Sinapses/genética , Transmissão Sináptica/genética , Transfecção
10.
Proc Natl Acad Sci U S A ; 107(10): 4710-5, 2010 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-20176955

RESUMO

Despite considerable evidence for a critical role of neuroligin-1 in the specification of excitatory synapses, the cellular mechanisms and physiological roles of neuroligin-1 in mature neural circuits are poorly understood. In mutant mice deficient in neuroligin-1, or adult rats in which neuroligin-1 was depleted, we have found that neuroligin-1 stabilizes the NMDA receptors residing in the postsynaptic membrane of amygdala principal neurons, which allows for a normal range of NMDA receptor-mediated synaptic transmission. We observed marked decreases in NMDA receptor-mediated synaptic currents at afferent inputs to the amygdala of neuroligin-1 knockout mice. However, the knockout mice exhibited a significant impairment in spike-timing-dependent long-term potentiation (STD-LTP) at the thalamic but not the cortical inputs to the amygdala. Subsequent electrophysiological analyses indicated that STD-LTP in the cortical pathway is largely independent of activation of postsynaptic NMDA receptors. These findings suggest that neuroligin-1 can modulate, in a pathway-specific manner, synaptic plasticity in the amygdala circuits of adult animals, likely by regulating the abundance of postsynaptic NMDA receptors.


Assuntos
Tonsila do Cerebelo/fisiologia , Moléculas de Adesão Celular Neuronais/fisiologia , Plasticidade Neuronal/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Transmissão Sináptica/fisiologia , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Potenciais de Ação , Tonsila do Cerebelo/metabolismo , Animais , Western Blotting , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Linhagem Celular , Maleato de Dizocilpina/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores , Humanos , Potenciação de Longa Duração , Camundongos , Camundongos Knockout , Interferência de RNA , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Tálamo/metabolismo , Tálamo/fisiologia
11.
Pharmacol Res Perspect ; 11(5): e01135, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37740715

RESUMO

The importance of vesicular monoamine transporter 2 (VMAT2) in dopamine regulation, which is considered crucial for neuropsychiatric disorders, is currently being studied. Moreover, the development of disease treatments using histone deacetylase (HDAC) inhibitors (HDACi) is actively progressing in various fields. Recently, research on the possibility of regulating neuropsychiatric disorders has been conducted. In this study, we evaluated whether VMAT2 expression increased by an HDACi can fine-tune neuropsychotic behavior, such as attention deficit hyperactivity disorder (ADHD) and protect against the cell toxicity through oxidized dopamine. First, approximately 300 candidate HDACi compounds were added to the SH-SY5Y dopaminergic cell line to identify the possible changes in the VMAT2 expression levels, which were measured using quantitative polymerase chain reaction. The results demonstrated, that treatment with pimelic diphenylamide 106 (TC-H 106), a class I HDACi, increased VMAT2 expression in both the SH-SY5Y cells and mouse brain. The increased VMAT2 expression induced by TC-H 106 alleviated the cytotoxicity attributed to 6-hydroxydopamine (6-OHDA) or 1-methyl-4-phenylpyridinium (MPP+ ) and free dopamine treatment. Moreover, dopamine concentrations, both intracellularly and in the synaptosomes, were significantly elevated by increased VMAT2 expression. These results suggest that dopamine concentration regulation by VMAT2 expression induced by TC-H 106 could alter several related behavioral aspects that was confirmed by attenuation of hyperactivity and impulsivity, which were major characteristics of animal model showing ADHD-like behaviors. These results indicate that HDACi-increased VMAT2 expression offers sufficient protections against dopaminergic cell death induced by oxidative stress. Thus, the epigenetic approach could be considered as therapeutic candidate for neuropsychiatric disease regulation.


Assuntos
Inibidores de Histona Desacetilases , Neuroblastoma , Humanos , Animais , Camundongos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Proteínas Vesiculares de Transporte de Monoamina/genética , Citoproteção , Dopamina , Oxidopamina
12.
Front Pharmacol ; 14: 1163970, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37274097

RESUMO

Anoctamin 1 (ANO1), a drug target for various cancers, including prostate and oral cancers, is an intracellular calcium-activated chloride ion channel that plays various physiopathological roles, especially in the induction of cancer growth and metastasis. In this study, we tested a novel compound isolated from Schisandra sphenanthera, known as schisandrathera D, for its inhibitory effect on ANO1. Schisandrathera D dose-dependently suppressed the ANO1 activation-mediated decrease in fluorescence of yellow fluorescent protein; however, it did not affect the adenosine triphosphate-induced increase in the intracellular calcium concentration or forskolin-induced cystic fibrosis transmembrane conductance regulator activity. Specifically, schisandrathera D gradually decreased the levels of ANO1 protein and significantly reduced the cell viability in ANO1-expressing cells when compared to those in ANO1-knockout cells. These effects could be attributed to the fact that schisandrathera D displayed better binding capacity to ANO1 protein than the previously known ANO1 inhibitor, Ani9. Finally, schisandrathera D increased the levels of caspase-3 and cleaved poly (ADP-ribose) polymerase 1, thereby indicating that its anticancer effect is mediated through apoptosis. Thus, this study highlights that schisandrathera D, which reduces ANO1 protein levels, has apoptosis-mediated anticancer effects in prostate and oral cancers, and thus, can be further developed into an anticancer agent.

13.
Biomed Pharmacother ; 153: 113373, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35785700

RESUMO

Anoctamin 1 (ANO1) is a calcium-activated chloride channel found in various cell types and is overexpressed in non-small cell lung cancer (NSCLC), a major cause of cancer-related mortality. With the rising interest in development of druggable compounds for NSCLC, there has been a corresponding rise in interest in ANO1, a novel drug target for NSCLC. However, as ANO1 inhibitors that have been discovered simultaneously exhibit both the functions of an inhibition of ANO1 channel as well as a reduction of ANO1 protein levels, it is unclear which of the two functions directly causes the anticancer effect. In this study, verteporfin, a chemical compound that reduces ANO1 protein levels was identified through high-throughput screening. Verteporfin did not inhibit ANO1-induced chloride secretion but reduced ANO1 protein levels in a dose-dependent manner with an IC50 value of ~300 nM. Moreover, verteporfin inhibited neither P2Y receptor-induced intracellular Ca2+ mobilization nor cystic fibrosis transmembrane conductance regulator (CFTR) channel activity, and molecular docking studies revealed that verteporfin bound to specific sites of ANO1 protein. Confirming that verteporfin reduces ANO1 protein levels, we then investigated the molecular mechanisms involved in its effect on NSCLC cells. Interestingly, verteporfin decreased ANO1 protein levels, the EGFR-STAT3 pathway as well as ANO1 mRNA expression. Verteporfin reduced the viability of ANO1-expressing cells (PC9, and gefitinib-resistant PC9) and induced apoptosis by increasing caspase-3 activity and PARP-1 cleavage. However, it did not affect hERG channel activity. These results show that the anticancer mechanism of verteporfin is caused via the down-regulation of ANO1.


Assuntos
Anoctamina-1 , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Proteínas de Neoplasias , Verteporfina , Anoctamina-1/genética , Anoctamina-1/metabolismo , Cálcio/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Canais de Cloreto/metabolismo , Regulação para Baixo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Simulação de Acoplamento Molecular , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Verteporfina/farmacologia
14.
Proc Natl Acad Sci U S A ; 105(40): 15587-92, 2008 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-18832154

RESUMO

Neuregulin-1 (NRG-1) is genetically linked with schizophrenia, a neurodevelopmental cognitive disorder characterized by imbalances in glutamatergic and dopaminergic function. NRG-1 regulates numerous neurodevelopmental processes and, in the adult, suppresses or reverses long-term potentiation (LTP) at hippocampal glutamatergic synapses. Here we show that NRG-1 stimulates dopamine release in the hippocampus and reverses early-phase LTP via activation of D4 dopamine receptors (D4R). NRG-1 fails to depotentiate LTP in hippocampal slices treated with the antipsychotic clozapine and other more selective D4R antagonists. Moreover, LTP is not depotentiated in D4R null mice by either NRG-1 or theta-pulse stimuli. Conversely, direct D4R activation mimics NRG-1 and reduces AMPA receptor currents and surface expression. These findings demonstrate that NRG-1 mediates its unique role in counteracting LTP via dopamine signaling and opens future directions to study new aspects of NRG function. The novel functional link between NRG-1, dopamine, and glutamate has important implications for understanding how imbalances in Neuregulin-ErbB signaling can impinge on dopaminergic and glutamatergic function, neurotransmitter pathways associated with schizophrenia.


Assuntos
Hipocampo/fisiologia , Potenciação de Longa Duração/fisiologia , Neuregulina-1/metabolismo , Receptores de Dopamina D4/metabolismo , Sinapses/fisiologia , Animais , Dopamina/metabolismo , Ácido Glutâmico/metabolismo , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Neuregulina-1/genética , Ratos , Ratos Endogâmicos F344 , Sinapses/metabolismo , Transmissão Sináptica/fisiologia
15.
Cells ; 10(4)2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923707

RESUMO

The overall five-year survival rate for late-stage patients of ovarian cancer is below 29% due to disease recurrence and drug resistance. Cancer stem cells (CSCs) are known as a major contributor to drug resistance and recurrence. Accordingly, therapies targeting ovarian CSCs are needed to overcome the limitations of present treatments. This study evaluated the effect of trimebutine maleate (TM) targeting ovarian CSCs, using A2780-SP cells acquired by a sphere culture of A2780 epithelial ovarian cancer cells. TM is indicated as a gastrointestinal motility modulator and is known to as a peripheral opioid receptor agonist and a blocker for various channels. The GI50 of TM was approximately 0.4 µM in A2780-SP cells but over 100 µM in A2780 cells, demonstrating CSCs specific growth inhibition. TM induced G0/G1 arrest and increased the AV+/PI+ dead cell population in the A2780-SP samples. Furthermore, TM treatment significantly reduced tumor growth in A2780-SP xenograft mice. Voltage gated calcium channels (VGCC) and calcium-activated potassium channels (BKCa) were overexpressed on ovarian CSCs and targeted by TM; inhibition of both channels reduced A2780-SP cells viability. TM reduced stemness-related protein expression; this tendency was reproduced by the simultaneous inhibition of VGCC and BKCa compared to single channel inhibition. In addition, TM suppressed the Wnt/ß-catenin, Notch, and Hedgehog pathways which contribute to many CSCs characteristics. Specifically, further suppression of the Wnt/ß-catenin pathway by simultaneous inhibition of BKCa and VGCC is necessary for the effective and selective action of TM. Taken together, TM is a potential therapeutic drug for preventing ovarian cancer recurrence and drug resistance.


Assuntos
Reposicionamento de Medicamentos , Células-Tronco Neoplásicas/patologia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Trimebutina/uso terapêutico , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Feminino , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Modelos Biológicos , Células-Tronco Neoplásicas/efeitos dos fármacos , Subunidades Proteicas/metabolismo , Sódio/metabolismo , Canais de Sódio/metabolismo , Fatores de Transcrição/metabolismo , Trimebutina/química , Trimebutina/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos
16.
Novartis Found Symp ; 289: 165-77; discussion 177-9, 193-5, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18497102

RESUMO

Polymorphisms in the Neuregulin 1 (NRG1) and ErbB4 receptor genes have been associated with schizophrenia in numerous cohort and family studies, and biochemical measurements from postmortem prefrontal cortex homogenates suggest that NRG/ErbB signalling is altered in schizophrenia. Moreover, recent work from our group, and from others, indicates that NRG/ErbB signalling has a role in regulating glutamatergic transmission--an intriguing finding given that glutamatergic hypofunction has been proposed to be involved in the pathogenesis underlying schizophrenia. Here we will provide a brief background of the complexity of the NRG/ErbB signalling system. We will then focus on how NRG1 reverses (depotentiates) long-term potentiation (LTP) at hippocampal Schaeffer collateral--CA1 glutamatergic synapses in the adult brain. Specifically, we found that NRG1 depotentiates LTP in an activity- and time-dependent manner. A role of endogenous NRG for regulating plasticity at hippocampal synapses is supported by experiments demonstrating that ErbB receptor antagonists completely block LTP depotentiation by brief theta-pulse stimuli, a subthreshold stimulus paradigm that reverses LTP in live animals. Preliminary results indicate that NRG1-mediated LTP depotentiation is NMDA receptor independent, and manifests as an internalization of GluR1-containing AMPA receptors. The importance of the NRG/ ErbB signalling pathway in regulating homeostasis at glutamatergic synapses, and its possible implications for schizophrenia, will be discussed.


Assuntos
Encéfalo/fisiopatologia , Neurregulinas/fisiologia , Plasticidade Neuronal/fisiologia , Esquizofrenia/fisiopatologia , Variação Genética , Humanos , Potenciação de Longa Duração , Neuregulina-1/fisiologia , Neurregulinas/genética , Receptor ErbB-2/fisiologia , Transdução de Sinais
17.
J Neurosci ; 25(41): 9378-83, 2005 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-16221846

RESUMO

Neuregulin-1 (NRG-1) has been identified genetically as a schizophrenia susceptibility gene, but its function in the adult brain is unknown. Here, we show that NRG-1beta does not affect basal synaptic transmission but reverses long-term potentiation (LTP) at hippocampal Schaffer collateral-->CA1 synapses in an activity- and time-dependent manner. Depotentiation by NRG-1beta is blocked by two structurally distinct and selective ErbB receptor tyrosine kinase inhibitors. Moreover, ErbB receptor inhibition increases LTP at potentiated synapses and blocks LTP reversal by theta-pulse stimuli. NRG-1beta selectively reduces AMPA, not NMDA, receptor EPSCs and has no effect on paired-pulse facilitation ratios. Live imaging of hippocampal neurons transfected with receptors fused to superecliptic green fluorescent protein, as well as quantitative analysis of native receptors, show that NRG-1beta stimulates the internalization of surface glutamate receptor 1-containing AMPA receptors. This novel regulation of LTP by NRG-1 has important implications for the modulation of synaptic homeostasis and schizophrenia.


Assuntos
Hipocampo/fisiologia , Potenciação de Longa Duração/fisiologia , Neuregulina-1/farmacologia , Neuregulina-1/fisiologia , Sinapses/fisiologia , Animais , Hipocampo/efeitos dos fármacos , Humanos , Técnicas In Vitro , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Sinapses/efeitos dos fármacos
18.
Sci Rep ; 6: 34433, 2016 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-27708404

RESUMO

MicroRNAs have emerged as key factors in development, neurogenesis and synaptic functions in the central nervous system. In the present study, we investigated a pathophysiological significance of microRNA-188-5p (miR-188-5p) in Alzheimer's disease (AD). We found that oligomeric Aß1-42 treatment diminished miR-188-5p expression in primary hippocampal neuron cultures and that miR-188-5p rescued the Aß1-42-mediated synapse elimination and synaptic dysfunctions. Moreover, the impairments in cognitive function and synaptic transmission observed in 7-month-old five familial AD (5XFAD) transgenic mice, were ameliorated via viral-mediated expression of miR-188-5p. miR-188-5p expression was down-regulated in the brain tissues from AD patients and 5XFAD mice. The addition of miR-188-5p rescued the reduction in dendritic spine density in the primary hippocampal neurons treated with oligomeric Aß1-42 and cultured from 5XFAD mice. The reduction in the frequency of mEPSCs was also restored by addition of miR-188-5p. The impairments in basal fEPSPs and cognition observed in 7-month-old 5XFAD mice were ameliorated via the viral-mediated expression of miR-188-5p in the hippocampus. Furthermore, we found that miR-188 expression is CREB-dependent. Taken together, our results suggest that dysregulation of miR-188-5p expression contributes to the pathogenesis of AD by inducing synaptic dysfunction and cognitive deficits associated with Aß-mediated pathophysiology in the disease.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Disfunção Cognitiva , Hipocampo , MicroRNAs , Fragmentos de Peptídeos , Sinapses , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Doença de Alzheimer/terapia , Peptídeos beta-Amiloides/biossíntese , Peptídeos beta-Amiloides/genética , Animais , Disfunção Cognitiva/genética , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Disfunção Cognitiva/terapia , Modelos Animais de Doenças , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Masculino , Camundongos , Camundongos Transgênicos , MicroRNAs/biossíntese , MicroRNAs/genética , Neurônios/metabolismo , Neurônios/patologia , Fragmentos de Peptídeos/biossíntese , Fragmentos de Peptídeos/genética , Sinapses/genética , Sinapses/metabolismo , Sinapses/patologia
19.
J Med Chem ; 59(22): 10209-10227, 2016 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-27805390

RESUMO

We evaluated the in vitro pharmacology as well as the absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties of chemical entities that not only were shown to be highly selective agonists for ERRγ but also exhibited enhanced pharmacokinetic profile compared with 3 (GSK5182). 6g and 10b had comparable potency to 3 and were far more selective for ERRγ over the ERRα, -ß, and ERα. The in vivo pharmacokinetic profiles of 6g and 10b were further evaluated, as they possessed superior in vitro ADMET profiles compared to the other compounds. Additionally, we observed a significant increase of fully glycosylated NIS protein, key protein for radioiodine therapy in anaplastic thyroid cancer (ATC), in 6g- or 10b-treated CAL62 cells, which indicated that these compounds could be promising enhancers for restoring NIS protein function in ATC cells. Thus, 6g and 10b possess advantageous druglike properties and can be used to potentially treat various ERRγ-related disorders.


Assuntos
Receptores de Estrogênio/metabolismo , Tamoxifeno/análogos & derivados , Linhagem Celular , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Tamoxifeno/síntese química , Tamoxifeno/química , Tamoxifeno/farmacologia
20.
Life Sci ; 76(9): 1013-25, 2005 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-15607330

RESUMO

Recent studies have indicated that Ginsenoside Rb1, one of the major components of ginseng root, may play an important role in protecting cells from damage. Here, we investigated the neuroprotective activity of Rb1 after hypoxic injury in young rats. About 50% animals were dead by exposing hypoxic condition three times in three consecutive days. Then, the pretreatment with Rb1 prior to hypoxic stimulation reduced animal death to 12%, and also significantly reduced the recovery time from hypoxia-related, compromised symptoms in survived animals. Rb1 also significantly reduced levels of lactate dehydrogenase (LDH) release from primary hippocampal neurons which were maintained at low oxygen concentration, indicating increased neuronal survival by Rb1. Ca(2+)/calmodulin-dependent kinase II (CaMKII) activity in the hippocampal tissues of hypoxia-induced rats was decreased to about 50% of the control animal. Then Rb1-treatment prior to hypoxic stimulation significantly elevated Ca(2+)-independent kinase II activity when measured 48 hr after hypoxic stimulation. Thus, the present data suggest that calcium independent CaMKII activity may be involved in the process of ginsenoside Rb1-mediated recovery of neuronal cells after hypoxic damage.


Assuntos
Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Cálcio/fisiologia , Ginsenosídeos/farmacologia , Hipóxia/enzimologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Células Cultivadas , Hipocampo/enzimologia , L-Lactato Desidrogenase/metabolismo , Masculino , Fosforilação , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa