Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Korean J Physiol Pharmacol ; 27(5): 493-511, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37641811

RESUMO

Hippo/YAP signaling hinders cancer progression. Inactivation of this pathway contributes to the development of esophageal cancer by activation of Akt. However, the possible interaction between Akt and Hippo/YAP pathways in esophageal cancer progression is unclear. In this study, we found that ursolic acid (UA) plus 3'3-diindolylmethane (DIM) efficiently suppressed the oncogenic Akt/Gsk-3ß signaling pathway while activating the Hippo tumor suppressor pathway in esophageal cancer cells. Moreover, the addition of the Akt inhibitor LY294002 and the PI3K inhibitor 3-methyladenine enhanced the inhibitory effects of UA plus DIM on Akt pathway activation and further stimulated the Hippo pathway, including the suppression of YAP nuclear translocation in esophageal cancer cells. Silencing YAP under UA plus DIM conditions significantly increased the activation of the tumor suppressor PTEN in esophageal cancer cells, while decreasing p-Akt activation, indicating that the Akt signaling pathway could be down-regulated in esophageal cancer cells by targeting PTEN. Furthermore, in a xenograft nude mice model, UA plus DIM treatment effectively diminished esophageal tumors by inactivating the Akt pathway and stimulating the Hippo signaling pathway. Thus, our study highlights a feedback loop between the PI3K/Akt and Hippo signaling pathways in esophageal cancer cells, implying that a low dose of UA plus DIM could serve as a promising chemotherapeutic combination strategy in the treatment of esophageal cancer.

2.
Biol Pharm Bull ; 41(2): 172-181, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29187670

RESUMO

Despite the relatively high prevalence of migraine or headache, the pathophysiological mechanisms triggering headache-associated peripheral hypersensitivities, are unknown. Since nitric oxide (NO) is well known as a causative factor in the pathogenesis of migraine or migraine-associated hypersensitivities, a mouse model has been established using systemic administration of the NO donor, nitroglycerin (NTG). Here we tried to investigate the time course development of facial or hindpaw hypersensitivity after repetitive NTG injection. NTG (10 mg/kg) was administrated to mice every other day for nine days. Two hours post-injection, NTG produced acute mechanical and heat hypersensitivity in the hind paws. By contrast, cold allodynia, but not mechanical hypersensitivity, occurred in the facial region. Moreover, this hindpaws mechanical hypersensitivity and the facial cold allodynia was progressive and long-lasting. We subsequently examined whether the depletion of capsaicin-sensitive primary afferents (CSPAs) with resiniferatoxin (RTX, 0.02 mg/kg) altered these peripheral hypersensitivities in NTG-treated mice. RTX pretreatment did not affect the NTG-induced mechanical allodynia in the hind paws nor the cold allodynia in the facial region, but it did inhibit the development of hind paw heat hyperalgesia. Similarly, NTG injection produced significant hindpaw mechanical allodynia or facial cold allodynia, but not heat hyperalgesia in transient receptor potential type V1 (TRPV1) knockout mice. These findings demonstrate that different peripheral hypersensitivities develop in the face versus hindpaw regions in a mouse model of repetitive NTG-induced migraine, and that these hindpaw mechanical hypersensitivity and facial cold allodynia are not mediated by the activation of CSPAs.


Assuntos
Doenças do Nervo Facial/fisiopatologia , Hiperalgesia/fisiopatologia , Transtornos de Enxaqueca/fisiopatologia , Proteínas do Tecido Nervoso/metabolismo , Neurônios Aferentes/efeitos dos fármacos , Doenças do Sistema Nervoso Periférico/fisiopatologia , Canais de Cátion TRPV/metabolismo , Animais , Capsaicina/farmacologia , Temperatura Baixa/efeitos adversos , Diterpenos/toxicidade , Resistência a Medicamentos , Doenças do Nervo Facial/induzido quimicamente , Doenças do Nervo Facial/metabolismo , Doenças do Nervo Facial/patologia , Membro Posterior , Temperatura Alta/efeitos adversos , Hiperalgesia/induzido quimicamente , Hiperalgesia/metabolismo , Hiperalgesia/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transtornos de Enxaqueca/metabolismo , Transtornos de Enxaqueca/patologia , Proteínas do Tecido Nervoso/agonistas , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Neurônios Aferentes/metabolismo , Neurônios Aferentes/patologia , Neurotoxinas/toxicidade , Doadores de Óxido Nítrico/toxicidade , Nitroglicerina/toxicidade , Especificidade de Órgãos , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/metabolismo , Doenças do Sistema Nervoso Periférico/patologia , Fármacos do Sistema Sensorial/farmacologia , Canais de Cátion TRPV/agonistas , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/genética
3.
Mol Pain ; 13: 1744806916688902, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28326932

RESUMO

Background Self-injurious behaviors (SIBs) are devastating traits in autism spectrum disorder (ASD). Although deficits in pain sensation might be one of the contributing factors underlying the development of SIBs, the mechanisms have yet to be addressed. Recently, the Shank2 synaptic protein has been considered to be a key component in ASD, and mutations of SHANK2 gene induce the dysfunction of N-methyl-D-aspartate (NMDA) receptors, suggesting a link between Shank2 and NMDA receptors in ASD. Given that spinal NMDA receptors play a pivotal role in pain hypersensitivity, we investigated the possible role of Shank2 in nociceptive hypersensitivity by examining changes in spontaneous pain following intrathecal NMDA injection in S hank2-/- ( Shank2 knock-out, KO) mice. Results Intrathecal NMDA injection evoked spontaneous nociceptive behaviors. These NMDA-induced nociceptive responses were significantly reduced in Shank2 KO mice. We also observed a significant decrease of NMDA currents in the spinal dorsal horn of Shank2 KO mice. Subsequently, we examined whether mitogen-activated protein kinase or AKT signaling is involved in this reduced pain behavior in Shank2 KO mice because the NMDA receptor is closely related to these signaling molecules. Western blotting and immunohistochemistry revealed that spinally administered NMDA increased the expression of a phosphorylated form of extracellular signal-regulated kinase (p-ERK) which was significantly reduced in Shank2 KO mice. However, p38, JNK, or AKT were not changed by NMDA administration. The ERK inhibitor, PD98059, decreased NMDA-induced spontaneous pain behaviors in a dose-dependent manner in wild-type mice. Moreover, it was found that the NMDA-induced increase in p-ERK was primarily colocalized with Shank2 proteins in the spinal cord dorsal horn. Conclusion Shank2 protein is involved in spinal NMDA receptor-mediated pain, and mutations of Shank2 may suppress NMDA-ERK signaling in spinal pain transmission. This study provides new clues into the mechanisms underlying pain deficits associated with SIB and deserves further study in patients with ASD.


Assuntos
Hiperalgesia/fisiopatologia , Proteínas do Tecido Nervoso/metabolismo , Nociceptividade/efeitos dos fármacos , Dor/patologia , Medula Espinal/metabolismo , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Modelos Animais de Doenças , Agonistas de Aminoácidos Excitatórios/toxicidade , Feminino , Flavonoides/farmacologia , Hiperalgesia/induzido quimicamente , Imidazóis/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , N-Metilaspartato/toxicidade , Proteínas do Tecido Nervoso/genética , Dor/induzido quimicamente , Medição da Dor , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Medula Espinal/efeitos dos fármacos
4.
Biol Pharm Bull ; 39(12): 1922-1931, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27601184

RESUMO

We recently demonstrated that activation of spinal sigma-1 receptors (Sig-1Rs) induces pain hypersensitivity via the activation of neuronal nitric oxide synthase (nNOS) and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (Nox2). However, the potential direct interaction between nNOS-derived nitric oxide (NO) and Nox2-derived reactive oxygen species (ROS) is poorly understood, particularly with respect to the potentiation of N-methyl-D-aspartate (NMDA) receptor activity in the spinal cord associated with the development of central sensitization. Thus, the main purpose of this study was to investigate whether Sig-1R-induced and nNOS-derived NO modulates spinal Nox2 activation leading to an increase in ROS production and ultimately to the potentiation of NMDA receptor activity and pain hypersensitivity. Intrathecal pretreatment with the nNOS inhibitor, 7-nitroindazole or with the Nox inhibitor, apocynin significantly inhibited the mechanical and thermal hypersensitivity induced by intrathecal administration of the Sig-1R agonist, 2-(4-morpholinethyl) 1-phenylcyclohexanecarboxylate hydrochloride (PRE084). Conversely, pretreatment with 5,10,15,20-tetrakis-(4-sulphonatophenyl)-porphyrinato iron(III) (FeTPPS; a scavenger of peroxynitrite, a toxic reaction product of NO and superoxide) had no effect on the PRE084-induced pain hypersensitivity. Pretreatment with 7-nitroindazole significantly reduced the PRE084-induced increase in Nox2 activity and concomitant ROS production in the lumbar spinal cord dorsal horn, whereas apocynin did not alter the PRE084-induced changes in nNOS phosphorylation. On the other hand pretreatment with apocynin suppressed the PRE084-induced increase in the protein kinase C (PKC)-dependent phosphorylation of NMDA receptor GluN1 subunit (pGluN1) at Ser896 site in the dorsal horn. These findings demonstrate that spinal Sig-1R-induced pain hypersensitivity is mediated by nNOS activation, which leads to an increase in Nox2 activity ultimately resulting in a ROS-induced increase in PKC-dependent pGluN1 expression.


Assuntos
Hiperalgesia/metabolismo , Glicoproteínas de Membrana/metabolismo , NADPH Oxidases/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Proteína Quinase C/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores sigma/metabolismo , Animais , Temperatura Alta , Masculino , Camundongos Endogâmicos ICR , NADPH Oxidase 2 , Óxido Nítrico/metabolismo , Dor/metabolismo , Estimulação Física , Corno Dorsal da Medula Espinal/metabolismo , Receptor Sigma-1
5.
J Am Chem Soc ; 137(2): 742-9, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25531438

RESUMO

Three families of ZnTe magic-sized nanoclusters (MSNCs) were obtained exclusively using polytellurides as a tellurium precursor in a one-pot reaction by simply varying the reaction temperature and time only. Different ZnTe MSNCs exhibit different self-assembling or aggregation behavior, owing to their different structure, cluster size, and dipole-dipole interactions. The smallest family of ZnTe MSNCs (F323) does not reveal a crystalline structure and as a result assembles into lamellar triangle plates. Continuous heating of as synthesized ZnTe F323 assemblies resulted in the formation of ZnTe F398 MSNCs with wurzite structure and concomitant transformation into lamellar rectangle assemblies with the organization of nanoclusters along the ⟨002⟩ direction. Further annealing of ZnTe F398 assembled lamellar rectangles leads to full organization of MSNCs in all directions and formation of larger ZnTe F444 NCs that spontaneously form ultrathin nanowires following an oriented attachment mechanism. The key step in control over the size distribution of ZnTe ultrathin nanowires is, in fact, the growth mechanism of ZnTe F398 MSNCs; namely, the step growth mechanism enables formation of more uniform nanowires compared to those obtained by continuous growth mechanism. High yield of ZnTe nanowires is achieved as a result of the wurzite structure of F398 precursor. Transient absorption (TA) measurements show that all three families possess ultrafast dynamics of photogenerated electrons, despite their different crystalline structures.

6.
Pharmacol Res ; 100: 353-64, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26316425

RESUMO

We have previously demonstrated that activation of the spinal sigma-1 receptor (Sig-1R) plays an important role in the development of mechanical allodynia (MA) via secondary activation of the N-methyl-d-aspartate (NMDA) receptor. Sig-1Rs have been shown to localize to astrocytes, and blockade of Sig-1Rs inhibits the pathologic activation of astrocytes in neuropathic mice. However, the mechanism by which Sig-1R activation in astrocytes modulates NMDA receptors in neurons is currently unknown. d-serine, synthesized from l-serine by serine racemase (Srr) in astrocytes, is an endogenous co-agonist for the NMDA receptor glycine site and can control NMDA receptor activity. Here, we investigated the role of d-serine in the development of MA induced by spinal Sig-1R activation in chronic constriction injury (CCI) mice. The production of d-serine and Srr expression were both significantly increased in the spinal cord dorsal horn post-CCI surgery. Srr and d-serine were only localized to astrocytes in the superficial dorsal horn, while d-serine was also localized to neurons in the deep dorsal horn. Moreover, we found that Srr exists in astrocytes that express Sig-1Rs. The CCI-induced increase in the levels of d-serine and Srr was attenuated by sustained intrathecal treatment with the Sig-1R antagonist, BD-1047 during the induction phase of neuropathic pain. In behavioral experiments, degradation of endogenous d-serine with DAAO, or selective blockade of Srr by LSOS, effectively reduced the development of MA, but not thermal hyperalgesia in CCI mice. Finally, BD-1047 administration inhibited the development of MA and this inhibition was reversed by intrathecal treatment with exogenous d-serine. These findings demonstrate for the first time that the activation of Sig-1Rs increases the expression of Srr and d-serine in astrocytes. The increased production of d-serine induced by CCI ultimately affects dorsal horn neurons that are involved in the development of MA in neuropathic mice.


Assuntos
Astrócitos/metabolismo , Hiperalgesia/metabolismo , Neuralgia/metabolismo , Receptores sigma/metabolismo , Serina/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Modelos Animais de Doenças , Etilenodiaminas/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Células do Corno Posterior/metabolismo , Racemases e Epimerases/metabolismo , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Receptor Sigma-1
7.
Mol Pain ; 10: 2, 2014 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-24401144

RESUMO

BACKGROUND: We previously developed a thrombus-induced ischemic pain (TIIP) animal model, which was characterized by chronic bilateral mechanical allodynia without thermal hyperalgesia (TH). On the other hand we had shown that intraplantar injection of acidic saline facilitated ATP-induced pain, which did result in the induction of TH in normal rats. Because acidic pH and increased ATP are closely associated with ischemic conditions, this study is designed to: (1) examine whether acidic saline injection into the hind paw causes the development of TH in TIIP, but not control, animals; and (2) determine which peripheral mechanisms are involved in the development of this TH. RESULTS: Repeated intraplantar injection of pH 4.0 saline, but not pH 5.5 and 7.0 saline, for 3 days following TIIP surgery resulted in the development of TH. After pH 4.0 saline injections, protein levels of hypoxia inducible factor-1α (HIF-1α) and carbonic anhydrase II (CA II) were elevated in the plantar muscle indicating that acidic stimulation intensified ischemic insults with decreased tissue acidity. At the same time point, there were no changes in the expression of TRPV1 in hind paw skin, whereas a significant increase in TRPV1 phosphorylation (pTRPV1) was shown in acidic saline (pH 4.0) injected TIIP (AS-TIIP) animals. Moreover, intraplantar injection of chelerythrine (a PKC inhibitor) and AMG9810 (a TRPV1 antagonist) effectively alleviated the established TH. In order to investigate which proton- or ATP-sensing receptors contributed to the development of TH, amiloride (an ASICs blocker), AMG9810, TNP-ATP (a P2Xs antagonist) or MRS2179 (a P2Y1 antagonist) were pre-injected before the pH 4.0 saline. Only MRS2179 significantly prevented the induction of TH, and the increased pTRPV1 ratio was also blocked in MRS2179 injected animals. CONCLUSION: Collectively these data show that maintenance of an acidic environment in the ischemic hind paw of TIIP rats results in the phosphorylation of TRPV1 receptors via a PKC-dependent pathway, which leads to the development of TH mimicking what occurs in chronic ischemic patients with severe acidosis. More importantly, peripheral P2Y1 receptors play a pivotal role in this process, suggesting a novel peripheral mechanism underlying the development of TH in these patients.


Assuntos
Membro Posterior/irrigação sanguínea , Hiperalgesia/complicações , Isquemia/etiologia , Dor/etiologia , Receptores Purinérgicos P2Y1/metabolismo , Canais de Cátion TRPV/metabolismo , Trombose/complicações , Ácidos , Acrilamidas/farmacologia , Difosfato de Adenosina/análogos & derivados , Difosfato de Adenosina/farmacologia , Animais , Benzofenantridinas/farmacologia , Western Blotting , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Modelos Animais de Doenças , Diterpenos/farmacologia , Membro Posterior/patologia , Temperatura Alta , Hiperalgesia/metabolismo , Hiperalgesia/patologia , Hipóxia/etiologia , Hipóxia/metabolismo , Hipóxia/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Injeções , Canais Iônicos/metabolismo , Isquemia/metabolismo , Isquemia/patologia , Dor/metabolismo , Dor/patologia , Fosforilação/efeitos dos fármacos , Proteína Quinase C/metabolismo , Ratos , Ratos Sprague-Dawley , Cloreto de Sódio/administração & dosagem , Cloreto de Sódio/farmacologia , Trombose/metabolismo , Trombose/patologia , Extratos de Tecidos
8.
Mol Brain ; 17(1): 50, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39095918

RESUMO

Neuroactive steroids (NASs) directly affect neuronal excitability. Despite their role in the nervous system is intimately linked to pain control, knowledge is currently limited. This study investigates the peripheral involvement of NASs in chronic ischemic pain by targeting the cytochrome P450 side-chain cleavage enzyme (P450scc). Using a rat model of hind limb thrombus-induced ischemic pain (TIIP), we observed an increase in P450scc expression in the ischemic hind paw skin. Inhibiting P450scc with intraplantar aminoglutethimide (AMG) administration from post-operative day 0 to 3 significantly reduced the development of mechanical allodynia. However, AMG administration from post-operative day 3 to 6 did not affect established mechanical allodynia. In addition, we explored the role of the peripheral sigma-1 receptor (Sig-1R) by co-administering PRE-084 (PRE), a Sig-1R agonist, with AMG. PRE reversed the analgesic effects of AMG during the induction phase. These findings indicate that inhibiting steroidogenesis with AMG alleviates peripheral ischemic pain during the induction phase via Sig-1Rs.


Assuntos
Modelos Animais de Doenças , Hiperalgesia , Isquemia , Ratos Sprague-Dawley , Receptores sigma , Animais , Hiperalgesia/tratamento farmacológico , Hiperalgesia/patologia , Hiperalgesia/complicações , Masculino , Isquemia/complicações , Isquemia/patologia , Receptores sigma/antagonistas & inibidores , Receptores sigma/metabolismo , Receptor Sigma-1 , Dor/tratamento farmacológico , Dor/complicações , Dor/etiologia , Dor/patologia , Membro Posterior/efeitos dos fármacos , Ratos , Sistema Enzimático do Citocromo P-450/metabolismo
9.
Mol Cells ; : 100125, 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39426682

RESUMO

FAM19A5 is a novel secretory protein expressed primarily in the brain. However, a recent study reported that FAM19A5 is an adipocyte-derived adipokine that regulates vascular smooth muscle function through sphingosine-1-phosphate receptor 2 (S1PR2). In our study, we investigated FAM19A5 transcript and protein levels in peripheral tissues, including adipose tissues, from wild-type, FAM19A5 knockout, and FAM19A5 LacZ knockin mice. We found that the FAM19A5 transcript levels in the central nervous system were much greater than those in any of the peripheral tissues, including adipose tissues. Furthermore, the FAM19A5 protein levels in adipose and reproductive tissues were below detectable limits for Western blot analysis and ELISA. Additionally, we found that the FAM19A5 protein did not interact with S1PR2 in terms of G protein-mediated signal transduction, ß-arrestin recruitment, or ligand-mediated internalization. Taken together, our findings revealed basal levels of FAM19A5 transcripts and proteins in peripheral tissues, confirming its primary expression in the central nervous system and lack of significant interaction with S1PR2.

10.
Pharmacol Res ; 74: 56-67, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23732704

RESUMO

We have recently demonstrated that spinal sigma-1 receptors (Sig-1Rs) mediate pain hypersensitivity in mice and neuropathic pain in rats. In this study, we examine the role of NADPH oxidase 2 (Nox2)-induced reactive oxygen species (ROS) on Sig-1R-induced pain hypersensitivity and the induction of chronic neuropathic pain. Neuropathic pain was produced by chronic constriction injury (CCI) of the right sciatic nerve in rats. Mechanical allodynia and thermal hyperalgesia were evaluated in mice and CCI-rats. Western blotting and dihydroethidium (DHE) staining were performed to assess the changes in Nox2 activation and ROS production in spinal cord, respectively. Direct activation of spinal Sig-1Rs with the Sig-1R agonist, PRE084 induced mechanical allodynia and thermal hyperalgesia, which were dose-dependently attenuated by pretreatment with the ROS scavenger, NAC or the Nox inhibitor, apocynin. PRE084 also induced an increase in Nox2 activation and ROS production, which were attenuated by pretreatment with the Sig-1R antagonist, BD1047 or apocynin. CCI-induced nerve injury produced an increase in Nox2 activation and ROS production in the spinal cord, all of which were attenuated by intrathecal administration with BD1047 during the induction phase of neuropathic pain. Furthermore, administration with BD1047 or apocynin reversed CCI-induced mechanical allodynia during the induction phase, but not the maintenance phase. These findings demonstrate that spinal Sig-1Rs modulate Nox2 activation and ROS production in the spinal cord, and ultimately contribute to the Sig-1R-induced pain hypersensitivity and the peripheral nerve injury-induced induction of chronic neuropathic pain.


Assuntos
Hiperalgesia/metabolismo , Glicoproteínas de Membrana/metabolismo , NADPH Oxidases/metabolismo , Neuralgia/metabolismo , Receptores sigma/metabolismo , Animais , Etilenodiaminas/farmacologia , Temperatura Alta , Masculino , Camundongos , Camundongos Endogâmicos ICR , Morfolinas/farmacologia , NADPH Oxidase 2 , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Receptores sigma/agonistas , Receptores sigma/antagonistas & inibidores , Medula Espinal/metabolismo , Tato , Receptor Sigma-1
11.
Front Neurosci ; 13: 391, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31057364

RESUMO

Despite the established comorbidity between mood disorders and abnormal eating behaviors, the underlying molecular mechanism and therapeutics remain to be resolved. Here, we show that a spexin-based galanin receptor type 2 agonist (SG2A) simultaneously normalized mood behaviors and body weight in corticosterone pellet-implanted (CORTI) mice, which are underweight and exhibit signs of anhedonia, increased anxiety, and depression. Administration of SG2A into the lateral ventricle produced antidepressive and anxiolytic effects in CORTI mice. Additionally, SG2A led to a recovery of body weight in CORTI mice while it induced significant weight loss in normal mice. In Pavlovian fear-conditioned mice, SG2A decreased contextual and auditory fear memory consolidation but accelerated the extinction of acquired fear memory without altering innate fear and recognition memory. The main action sites of SG2A in the brain may include serotonergic neurons in the dorsal raphe nucleus for mood control, and proopiomelanocortin/corticotropin-releasing hormone neurons in the hypothalamus for appetite and body weight control. Furthermore, intranasal administration of SG2A exerted the same anxiolytic and antidepressant-like effects and decreased food intake and body weight in a dose-dependent manner. Altogether, these results indicate that SG2A holds promise as a clinical treatment for patients with comorbid mood disorders and abnormal appetite/body weight.

12.
Br J Pharmacol ; 175(3): 558-572, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29172248

RESUMO

BACKGROUND AND PURPOSE: Although we have recently demonstrated that spinal astrocyte gap junctions mediate the development of mirror-image pain (MIP), it is still unclear which astrocyte-derived factor is responsible for the development of MIP and how its production is controlled. In the present study, we focused on the role of ipsilateral versus contralateral D-serine in the development of MIP and investigated the possible involvement of σ1 receptors and gap junctions in astrocyte D-serine production. EXPERIMENTAL APPROACH: Following carrageenan injection, mechanical allodynia was tested at various time points to examine the effect of individual drugs. Immunohistochemistry and Western blot analyses were performed to clarify the expression levels of spinal D-serine, serine racemase, σ1 receptors and connexin 43. KEY RESULTS: The expression of ipsilateral D-serine was up-regulated during the early phase of inflammation, while contralateral D-serine increased during the later phase of inflammation. The pharmacological inhibition of D-serine during the early phase blocked the development of both ipsilateral and contralateral mechanical allodynia. However, the inhibition of D-serine during the later phase of inflammation blocked contralateral, but not ipsilateral mechanical allodynia. Furthermore, the inhibition of σ1 receptors during the earlier phase of inflammation inhibited the increase in ipsilateral D-serine. Conversely, the blockade of astrocyte gap junctions suppressed the up-regulation of contralateral D-serine during the later phase of inflammation. CONCLUSION AND IMPLICATIONS: Spinal astrocyte D-serine plays an important role in the development of mirror-image pain. Furthermore, σ1 receptors and astrocyte gap junction signalling mediate ipsilateral and contralateral D-serine production respectively.


Assuntos
Astrócitos/fisiologia , Carragenina/toxicidade , Junções Comunicantes/fisiologia , Dor/tratamento farmacológico , Receptores sigma/fisiologia , Serina/administração & dosagem , Animais , Astrócitos/efeitos dos fármacos , Relação Dose-Resposta a Droga , Junções Comunicantes/efeitos dos fármacos , Injeções Espinhais , Masculino , Dor/induzido quimicamente , Medição da Dor/efeitos dos fármacos , Medição da Dor/métodos , Ratos , Ratos Sprague-Dawley , Medula Espinal/efeitos dos fármacos , Medula Espinal/fisiologia , Receptor Sigma-1
13.
Brain Res Bull ; 130: 165-172, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28153540

RESUMO

Although interleukin-1ß (IL-1ß) is a prototypical pro-inflammatory cytokine, the specific mechanisms underlying the role of its cognate receptor, the interleukin-1 receptor (IL-1R) in peripheral sensitization remain to be investigated. Since emerging evidence in the literature indicates that IL-1ß can modulate membrane-bound receptors, we decided to examine the involvement of P2Y1 receptor (P2Y1R) in IL-1ß induced pain and the potential interaction of P2Y1Rs and IL-1Rs in both naïve and carrageenan injected rats. Intraplantar (i.pl) injection of IL-1ß dose-dependently produced mechanical and thermal hypersensitivity in naïve rats. Pre-treatment with IL-1ra (i.pl, 30 and 100ng), an endogenous IL-1R antagonist, prevented the IL-1ß induced mechanical and thermal hypersensitivity. Pre-treatment with MRS2500 (i.pl, 1 and 3nmol), a specific P2Y1R antagonist, dose-dependently reduced IL-1ß induced thermal hypersensitivity, but did not affect the development of mechanical hypersensitivity. Conversely coadministration of MRS2500 (i.pl, 0.1nmol, sub-effective dose) together with IL-1ra (10nmol, sub-effective dose) significantly reduced IL-1ß induced thermal, but not mechanical hypersensitivity. We next used immunohistochemistry to demonstrate that P2Y1 and IL-1 type I receptors co-localize predominantly in small diameter neurons in the dorsal root ganglion. We also performed experiments to examine the interaction of P2Y1Rs and IL-1Rs under the inflammatory conditions induced by 2% carrageenan. Intraplantar coadministration of MRS2500 (3nmol, sub-effective dose) and IL-1ra (30ng, sub-effective dose) significantly reduced inflammatory thermal, but not mechanical, hypersensitivity. These data indicate the involvement of P2Y1Rs in IL-1ß mediated pain in both naive and carrageenan injected rats. There is a positive interaction between peripheral P2Y1Rs and IL-1Rs in both IL-1ß and carrageenan-induced thermal hypersensitivity.


Assuntos
Hiperalgesia/fisiopatologia , Interleucina-1beta/fisiologia , Receptores de Interleucina-1/fisiologia , Receptores Purinérgicos P2Y1/fisiologia , Animais , Carragenina/administração & dosagem , Hiperalgesia/induzido quimicamente , Interleucina-1beta/administração & dosagem , Masculino , Limiar da Dor , Ratos Sprague-Dawley
14.
J Pain ; 18(4): 415-427, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27986591

RESUMO

We have recently shown that spinal sigma-1 receptor (Sig-1R) activation facilitates nociception via an increase in phosphorylation of the N-methyl-D-aspartate (NMDA) receptor GluN1 subunit (pGluN1). The present study was designed to examine whether the Sig-1R-induced facilitative effect on NMDA-induced nociception is mediated by D-serine, and whether D-serine modulates spinal pGluN1 expression and the development of neuropathic pain after chronic constriction injury (CCI) of the sciatic nerve. Intrathecal administration of the D-serine degrading enzyme, D-amino acid oxidase attenuated the facilitation of NMDA-induced nociception induced by the Sig-1R agonist, 2-(4-morpholinethyl)1-phenylcyclohexane carboxylate. Exogenous D-serine increased protein kinase C (PKC)-dependent (Ser896) pGluN1 expression and facilitated NMDA-induced nociception, which was attenuated by preteatment with the PKC inhibitor, chelerythrine. In CCI mice, administration of the serine racemase inhibitor, L-serine O-sulfate potassium salt or D-amino acid oxidase on postoperative days 0 to 3 suppressed CCI-induced mechanical allodynia (MA) and pGluN1 expression on day 3 after CCI surgery. Intrathecal administration of D-serine restored MA as well as the GluN1 phosphorylation on day 3 after surgery that was suppressed by the Sig-1R antagonist, N-[2-(3,4-dichlorophenyl)ethyl]-N-methyl-2-(dimethylamino)ethylamine dihydrobromide or the astrocyte inhibitor, fluorocitrate. In contrast, D-serine had no effect on CCI-induced thermal hyperalgesia or GluN1 expression. These results indicate that spinal D-serine: 1) mediates the facilitative effect of Sig-1R on NMDA-induced nociception, 2) modulates PKC-dependent pGluN1 expression, and 3) ultimately contributes to the induction of MA after peripheral nerve injury. PERSPECTIVE: This report shows that reducing D-serine suppresses central sensitization and significantly alleviates peripheral nerve injury-induced chronic neuropathic pain and that this process is modulated by spinal Sig-1Rs. This preclinical evidence provides a strong rationale for using D-serine antagonists to treat peripheral nerve injury-induced neuropathy.


Assuntos
Hiperalgesia/etiologia , Proteínas do Tecido Nervoso/metabolismo , Neuralgia/complicações , Proteína Quinase C/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores sigma/metabolismo , Serina/farmacologia , Animais , D-Aminoácido Oxidase/metabolismo , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Etilenodiaminas/farmacologia , Agonistas de Aminoácidos Excitatórios/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Morfolinas/farmacologia , N-Metilaspartato/farmacologia , N-Metilaspartato/toxicidade , Fosforilação/efeitos dos fármacos , Estimulação Física/efeitos adversos , Receptores sigma/antagonistas & inibidores , Medula Espinal/efeitos dos fármacos , Receptor Sigma-1
15.
Exp Neurol ; 287(Pt 1): 1-13, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27776252

RESUMO

Although we have recently demonstrated that carrageenan-induced inflammation upregulates the expression of spinal interleukin (IL)-1ß, which inhibits spinal astrocyte activation and results in the delayed development of Mirror-Image Pain (MIP), little is known regarding the mechanisms that underlie how spinal IL-1ß inhibits the astrocyte activation. In this study, we examined the effect of spinal IL-1ß on astrocyte gap junctions (GJ) and the development of MIP. Following unilateral carrageenan (CA) injection, mechanical allodynia (MA) was evaluated at various time points. Immunohistochemistry and Western blot analysis were used to determine changes in the expression of GFAP and connexins (Cx) in the spinal cord dorsal horn. Carrageenan rats showed a delayed onset of contralateral MA, which mimicked the temporal expression pattern of spinal Cx43 (an astrocyte gap junctional protein) and GFAP. Intrathecal administration of an interleukin-1 receptor antagonist (IL-1ra) twice-a-day on post-carrageenan injection days 0 to 3 caused a significant increase in contralateral MA and spinal Cx43 and GFAP expression. In addition, co-administration of IL-1ß with IL-1ra blocked the IL-1ra-induced increase in contralateral MA and the upregulated expression of spinal Cx43 and GFAP. Finally, co-administration of carbenoxolone (CBX; a GJ decoupler) or Gap26 (a specific Cx43 mimetic blocking peptide) with IL-1ra significantly blocked the IL-1ra-induced early development of contralateral MA and the associated upregulation of spinal Cx43 and GFAP expression. These results demonstrate that spinal IL-1ß suppresses Cx43 expression and astrocyte activation during the early phase of CA-induced inflammation resulting in the delayed onset of contralateral MA. These findings imply that spinal IL-1ß can inhibit astrocyte activation and regulate the time of induction of contralateral MA through modulation of spinal Cx43 expression.

16.
Neuropharmacology ; 111: 34-46, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27567941

RESUMO

We have previously shown using a spinal cord injury (SCI) model that gap junctions contribute to the early spread of astrocyte activation in the lumbar spinal cord and that this astrocyte communication plays critical role in the induction of central neuropathic pain. Sigma-1 receptors (Sig-1Rs) have been implicated in spinal astrocyte activation and the development of peripheral neuropathic pain, yet their contribution to central neuropathic pain remains unknown. Thus, we investigated whether SCI upregulates spinal Sig-1Rs, which in turn increase the expression of the astrocytic gap junction protein, connexin 43 (Cx43) leading to the induction of central neuropathic pain. A thoracic spinal cord hemisection significantly increased both astrocyte activation and Cx43 expression in lumbar dorsal horn. Sig-1Rs were also increased in lumbar dorsal horn astrocytes, but not neurons or microglia. Intrathecal injection of an astrocyte metabolic inhibitor (fluorocitrate); a gap junction/hemichannel blocker (carbenoxolone); or a Cx43 mimetic peptide (43Gap26) significantly reduced SCI-induced bilateral below-level mechanical allodynia. Blockade of Sig-1Rs with BD1047 during the induction phase of pain significantly suppressed the SCI-induced development of mechanical allodynia, astrocyte activation, increased expression of Cx43 in both total and membrane levels, and increased association of Cx43 with Sig-1R. However, SCI did not change the expression of oligodendrocyte (Cx32) or neuronal (Cx36) gap junction proteins. These findings demonstrate that SCI activates astrocyte Sig-1Rs leading to increases in the expression of the gap junction protein, Cx43 and astrocyte activation in the lumbar dorsal horn, and ultimately contribute to the induction of bilateral below-level mechanical allodynia.


Assuntos
Astrócitos/metabolismo , Conexina 43/metabolismo , Hiperalgesia/metabolismo , Neuralgia/metabolismo , Receptores sigma/metabolismo , Corno Dorsal da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/complicações , Animais , Conexina 43/fisiologia , Modelos Animais de Doenças , Etilenodiaminas/administração & dosagem , Hiperalgesia/complicações , Masculino , Camundongos , Camundongos Endogâmicos ICR , Neuralgia/complicações , Receptores sigma/antagonistas & inibidores , Receptor Sigma-1
17.
Brain Res Bull ; 121: 227-32, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26876754

RESUMO

The role of peripheral neurosteroids and their related mechanisms on nociception have not been thoroughly investigated. Based on emerging evidence in the literature indicating that neurosteroids and their main target receptors, i.e., sigma-1, GABAA and NMDA, affect P2X-induced changes in neuronal activity, this study was designed to investigate the effect of peripherally injected dehydroepiandrosterone sulphate (DHEAS) and pregnenolone sulfate (PREGS) on P2X receptor-mediated mechanical allodynia in rats. Intraplantar injection of either neurosteroids alone did not produced any detectable changes in paw withdrawal frequency to the innocuous mechanical stimulation in naïve rats. However, When DHEAS or PREGS were co-injected with a sub-effective dose of αßmeATP, mechanical allodynia was developed and this was dose dependently blocked by pre-injection of the P2X antagonist, TNP-ATP. These results demonstrates that DHEAS and PREGS potentiate the activity of P2X receptors which results in the enhancement of αßmeATP-induced mechanical allodynia. In order to investigate the potential role of peripheral sigma-1, GABAA and NMDA receptors in this facilitatory action, we pretreated animals with BD-1047 (a sigma-1 antagonist), muscimol (a GABAA agonist) or MK-801 (a NMDA antagonist) prior to DHEAS or PREGS+αßmeATP injection. Only BD-1047 effectively prevented the facilitatory effects induced by neurosteroids on αßmeATP-induced mechanical allodynia. Collectively, we have shown that peripheral neurosteroids potentiate P2X-induced mechanical allodynia and that this action is mediated by sigma-1, but not by GABAA nor NMDA, receptors.


Assuntos
Hiperalgesia/induzido quimicamente , Hiperalgesia/metabolismo , Receptores Purinérgicos P2X/metabolismo , Receptores sigma/metabolismo , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia , Animais , Sulfato de Desidroepiandrosterona/toxicidade , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Esquema de Medicação , Etilenodiaminas/farmacologia , Hiperalgesia/tratamento farmacológico , Masculino , Medição da Dor , Pregnenolona/toxicidade , Agonistas do Receptor Purinérgico P2X/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores sigma/antagonistas & inibidores , Fatores de Tempo
18.
Pain ; 156(6): 1046-1059, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25749305

RESUMO

Damage on one side of the body can also result in pain on the contralateral unaffected side, called mirror-image pain (MIP). Currently, the mechanisms responsible for the development of MIP are unknown. In this study, we investigated the involvement of spinal microglia and interleukin-1ß (IL-1ß) in the development of MIP using a peripheral inflammatory pain model. After unilateral carrageenan injection, mechanical allodynia (MA) in both hind paws and the expression levels of spinal Iba-1, IL-1ß, and GFAP were evaluated. Ipsilateral MA was induced beginning at 3 hours after carrageenan injection, whereas contralateral MA showed a delayed onset occurring 5 days after injection. A single intrathecal (i.t.) injection of minocycline, a tetracycline derivative that displays selective inhibition of microglial activation, or an interleukin-1 receptor antagonist (IL-1ra) on the day of carrageenan injection caused an early temporary induction of contralateral MA, whereas repeated i.t. treatment with these drugs from days 0 to 3 resulted in a long-lasting contralateral MA, which was evident in its advanced development. We further showed that IL-1ß was localized to microglia and that minocycline inhibited the carrageenan-induced increases in spinal Iba-1 and IL-1ß expression. Conversely, minocycline or IL-1ra pretreatment increased GFAP expression as compared with that of control rats. However, i.t. pretreatment with fluorocitrate, an astrocyte inhibitor, restored minocycline- or IL-1ra-induced contralateral MA. These results suggest that spinal IL-1ß derived from activated microglia temporarily suppresses astrocyte activation, which can ultimately prevent the development of contralateral MA under inflammatory conditions. These findings imply that microglial IL-1ß plays an important role in regulating the induction of inflammatory MIP.


Assuntos
Astrócitos/fisiologia , Lateralidade Funcional/fisiologia , Hiperalgesia/prevenção & controle , Interleucina-1beta/metabolismo , Microglia/metabolismo , Corno Dorsal da Medula Espinal/citologia , Animais , Astrócitos/metabolismo , Carragenina/toxicidade , Citratos/farmacologia , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Hiperalgesia/etiologia , Inflamação/induzido quimicamente , Inflamação/complicações , Proteína Antagonista do Receptor de Interleucina 1/administração & dosagem , Masculino , Microglia/efeitos dos fármacos , Minociclina/uso terapêutico , Proteínas do Tecido Nervoso/metabolismo , Dor/tratamento farmacológico , Dor/etiologia , Dor/fisiopatologia , Ratos , Ratos Sprague-Dawley , Receptores Tipo I de Interleucina-1/metabolismo , Medula Espinal/patologia
19.
Neuropharmacology ; 79: 368-79, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24333674

RESUMO

Although previous reports have suggested that P2Y1 receptors (P2Y1Rs) are involved in cutaneous nociceptive signaling, it remains unclear how P2Y1Rs contribute to peripheral sensitization. The current study was designed to delineate the role of peripheral P2Y1Rs in pain and to investigate potential linkages to mitogen-activated protein kinase (MAPK) in DRGs and Transient Receptor Potential Vanilloid 1 (TRPV1) expression in a rodent inflammatory pain model. Following injection of 2% carrageenan into the hind paw, expressions of P2Y1 and TRPV1 and the phosphorylation rates of both p38 MAPK and ERK but not JNK were increased and peaked at day 2 post-injection. Blockade of peripheral P2Y1Rs by the P2Y1R antagonist, MRS2500 injection (i.pl, D0 to D2) significantly reduced the induction of thermal hyperalgesia, but not mechanical allodynia. Simultaneously, MRS2500 injections suppressed upregulated TRPV1 expression and DRG p38 phosphorylation, while pERK signaling was not affected. Furthermore, inhibition of p38 activation in the DRGs by SB203580 (a p38 inhibitor, i.t, D0 to D2) prevented the upregulation of TRPV1 and a single i.t injection of SB203580 reversed the established thermal hyperalgesia, but not mechanical allodynia. Lastly, to identify the mechanism of action of P2Y1Rs, we repeatedly injected the P2Y1 agonist, MRS2365 into the naïve rat's hind paw and observed a dose-dependent increase in TRPV1 expression and p38 MAPK phosphorylation. These data demonstrate a sequential role for P2Y1R, p38 MAPK and TRPV1 in inflammation-induced thermal hyperalgesia; thus, peripheral P2Y1Rs activation modulates p38 MAPK signaling and TRPV1 expression, which ultimately leads to the induction of thermal hyperalgesia.


Assuntos
Hiperalgesia/tratamento farmacológico , Inflamação/complicações , Dor/tratamento farmacológico , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Receptores Purinérgicos P2Y1/metabolismo , Canais de Cátion TRPV/metabolismo , Difosfato de Adenosina/análogos & derivados , Difosfato de Adenosina/farmacologia , Animais , Carragenina , Nucleotídeos de Desoxiadenina/farmacologia , Inibidores Enzimáticos/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Temperatura Alta , Hiperalgesia/metabolismo , Imidazóis/farmacologia , MAP Quinase Quinase 4/metabolismo , Masculino , Dor/metabolismo , Agonistas do Receptor Purinérgico P2Y/farmacologia , Piridinas/farmacologia , Ratos , Ratos Sprague-Dawley , Tato , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
20.
Exp Neurol ; 247: 383-91, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23333567

RESUMO

The direct activation of the spinal sigma-1 receptor (Sig-1R) produces mechanical allodynia (MA) and thermal hyperalgesia (TH) in mice. In addition, the blockade of the spinal Sig-1R prevents the induction of MA, but not TH in chronic constriction injury (CCI)-induced neuropathic rats. The present study was designed to investigate whether the increase in spinal p38 MAPK phosphorylation (p-p38 MAPK) mediates Sig-1R-induced MA or TH in mice and the induction of MA in neuropathic rats. MA and TH were evaluated using von Frey filaments and a hot-plate apparatus, respectively. Neuropathic pain was produced by CCI of the right sciatic nerve in rats. Western blot assay and immunohistochemistry were performed to determine the changes of p-p38 MAPK expression in the spinal cord. Intrathecal (i.t.) injection of PRE084, a selective Sig-1R agonist, into naïve mice time-dependently increased the expression of p-p38 MAPK, which was blocked by pretreatment with BD1047, a Sig-1R antagonist. I.t. pretreatment with SB203580, a p38 MAPK inhibitor also dose-dependently inhibited PRE084-induced MA, whereas TH induction was not affected. In CCI rats, i.t. injection of BD1047 during the induction phase (postoperative days 0 to 5) reduced the CCI-induced increase in p-p38 MAPK. In addition, i.t. SB203580 treatment during the induction phase also suppressed the development of CCI-induced MA, but not TH. Conversely, i.t. SB203580 treatment during the maintenance phase (postoperative days 15 to 20) had no effect on CCI-induced MA or TH. These results demonstrate that the increase in spinal p-p38 MAPK is closely associated with the induction of Sig-1R mediated MA, but not TH. Sigma-1 receptor modulation of p-p38 MAPK also plays an important role in the induction, but not the maintenance, of MA in neuropathic pain.


Assuntos
Hiperalgesia/etiologia , Receptores sigma/metabolismo , Ciática/complicações , Ciática/patologia , Medula Espinal/enzimologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Análise de Variância , Animais , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Etilenodiaminas/farmacologia , Imidazóis/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Morfolinas/farmacologia , Medição da Dor , Limiar da Dor/efeitos dos fármacos , Limiar da Dor/fisiologia , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Piridinas/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores sigma/antagonistas & inibidores , Receptor Sigma-1
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa