RESUMO
BACKGROUND: Methods used to sample mosquitoes are important to consider when estimating entomologic metrics. Human landing catches (HLCs) are considered the gold standard for collecting malaria vectors. However, HLCs are labour intensive, can expose collectors to transmission risk, and are difficult to implement at scale. This study compared alternative methods to HLCs for collecting Anopheles mosquitoes in eastern Uganda. METHODS: Between June and November 2021, mosquitoes were collected from randomly selected households in three parishes in Tororo and Busia districts. Mosquitoes were collected indoors and outdoors using HLCs in 16 households every 4 weeks. Additional collections were done indoors with prokopack aspirators, and outdoors with pit traps, in these 16 households every 2 weeks. CDC light trap collections were done indoors in 80 households every 4 weeks. Female Anopheles mosquitoes were identified morphologically and Anopheles gambiae sensu lato were speciated using PCR. Plasmodium falciparum sporozoite testing was done with ELISA. RESULTS: Overall, 4,891 female Anopheles were collected, including 3,318 indoors and 1,573 outdoors. Compared to indoor HLCs, vector density (mosquitoes per unit collection) was lower using CDC light traps (4.24 vs 2.96, density ratio [DR] 0.70, 95% CIs 0.63-0.77, p < 0.001) and prokopacks (4.24 vs 1.82, DR 0.43, 95% CIs 0.37-0.49, p < 0.001). Sporozoite rates were similar between indoor methods, although precision was limited. Compared to outdoor HLCs, vector density was higher using pit trap collections (3.53 vs 6.43, DR 1.82, 95% CIs 1.61-2.05, p < 0.001), while the sporozoite rate was lower (0.018 vs 0.004, rate ratio [RR] 0.23, 95% CIs 0.07-0.75, p = 0.008). Prokopacks collected a higher proportion of Anopheles funestus (75.0%) than indoor HLCs (25.8%), while pit traps collected a higher proportion of Anopheles arabiensis (84.3%) than outdoor HLCs (36.9%). CONCLUSION: In this setting, the density and species of mosquitoes collected with alternative methods varied, reflecting the feeding and resting characteristics of the common vectors and the different collection approaches. These differences could impact on the accuracy of entomological indicators and estimates of malaria transmission, when using the alternative methods for sampling mosquitos, as compared to HLCs.
Assuntos
Anopheles , Malária , Animais , Feminino , Humanos , Mosquitos Vetores , Uganda , Comportamento Alimentar , Esporozoítos , Controle de Mosquitos/métodosRESUMO
BACKGROUND: Over the last two decades, there has been remarkable progress in malaria control in sub-Saharan Africa, due mainly to the massive deployment of long-lasting insecticidal nets and indoor residual spraying. Despite these gains, it is clear that in many situations, additional interventions are needed to further reduce malaria transmission. The World Health Organization (WHO) has promoted the Integrated Vector Management (IVM) approach through its Global Vector Control Response 2017-2030. However, prior roll-out of larval source management (LSM) as part of IVM, knowledge on ecology of larval aquatic habitats is required. METHODS: Aquatic habitats colonized by immature Anopheles and culicines vectors were characterized at three sites of low, medium and high malaria transmission in Uganda from October 2011 to June 2015. Larval surveys were conducted along transects in each site and aquatic habitats described according to type and size. Immature Anopheles, culicines and pupae from the described habitats were sampled using standard dipping methods to determine larval and pupae densities. Larvae were identified as anopheline or culicine, and counted. Pupae were not identified further. Binary logistic regression analysis was used to identify factors associated with the presence of immature Anopheles and culicines in each site. RESULTS: A total of 1205 larval aquatic habitats were surveyed and yielded a total of 17,028 anopheline larvae, 26,958 culicine larvae and 1189 pupae. Peaks in larval abundance occurred in all sites in March-May and August-October coinciding with the rainy seasons. Anopheles larvae were found in 52.4% (n = 251) of aquatic habitats in Tororo, a site of high transmission, 41.9% (n = 536) of habitats in Kanungu, a site with moderate malaria transmission, and 15.8% (n = 418) in Jinja, a site with low malaria transmission. The odds of finding larvae was highest in rice fields compared to pools in both Tororo (odds ratio, OR = 4.21, 95% CI 1.22-14.56, p = 0.02) and Kanungu (OR = 2.14, 95% CI 1.12-4.07, p = 0.02), while in Jinja the odd were highest in containers (OR = 4.55, 95% CI = 1.09-19.14, p = 0.03). In Kanungu, larvae were less likely to be found in containers compared to pools (OR = 0.26, 95% CI 0.09-0.66, p = 0.008) and river fringe (OR = 0.19, 95% CI 0.07-0.52, p = 0.001). Medium sized habitats were associated with high odds of finding larvae compared to small habitats (OR = 3.59, 95% CI 1.18-14.19, p = 0.039). CONCLUSIONS: These findings show that immature Anopheles and culicines were common in areas of high and moderate transmission but were rare in areas of low transmission. Although immature Anopheles and culicines were found in all types of water bodies, they were most common in rice fields and less common in open drains and in river fringes. Methods are needed to reduce the aquatic stages of anopheline mosquitoes in human-made habitats, particularly rice fields.
Assuntos
Distribuição Animal , Culicidae/fisiologia , Ecossistema , Mosquitos Vetores/fisiologia , Animais , Anopheles/crescimento & desenvolvimento , Anopheles/fisiologia , Culicidae/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Larva/fisiologia , Malária/transmissão , Mosquitos Vetores/crescimento & desenvolvimento , Pupa/crescimento & desenvolvimento , Pupa/fisiologia , UgandaRESUMO
Background: Long lasting insecticide-treated bednets (LLINs) are the most widely used tool for preventing malaria. There has been a plateau in progress in the highest burden African countries since 2015, leading to questions about the effectiveness of LLINs. In this study, remote LLIN use monitors were deployed in a cohort in Eastern Uganda to explore how LLIN use interacts with mosquito exposure. Methods: The SmartNet study included 20 households from May to October 2019. SmartNet devices recorded, every 15 min, whether an LLIN was unfurled or folded up. Unannounced visits were used to assess SmartNet accuracy. Risk factors associated with poor LLIN use were assessed using generalized linear equations. Female Anopheles exposure was estimated by combining hourly probabilities of exposure from human landing catches and measures of density from biweekly CDC light traps in participants rooms. Mosquito exposure averted by LLINs was quantified using SmartNet measurements and age-related differences were estimated using generalized linear equations, adjusting for relevant covariates and household clustering. Results: 96 individuals contributed 5,640 SmartNet observation nights. In 126 unannounced visits, SmartNet had an area under the curve of 0.869 in classifying whether the LLIN was up or down. The rate of non-use was 13.5% of nights (95% CI: 12.6-14.3%). Compared to children under 5, non-use was 1.8 times higher (95% CI: 1.6-2.1; p < 0.001) in children 5-15 years and 2.6 times higher (95% CI: 2.2-3.1; p < 0.001) in participants aged 15-<30years. There was no difference between children under 5 years and adults > 30 years. LLIN use averted 50.3% of female Anopheles mosquito exposure (95% CI: 40.0-60.0%), with decreasing point estimates of efficacy across age groups: from 61.7% (95% CI: 42.6-80.7%) in children under 5 years to 48.0% (95% CI: 29.1-66.8%) in adults over 30. Conclusions: Objective monitors are accurate and can feasibly be deployed to obtain data about LLIN use. LLINs provided protection from only 50% of female Anopheles mosquito exposure in this cohort and protection was dependent upon age. In assessing the role of LLINs in malaria prevention it is crucial to consider the dynamics between mosquito exposure and LLIN use behaviors.
RESUMO
House construction is rapidly modernizing across Africa but the potential benefits for human health are poorly understood. We hypothesised that improvements to housing would be associated with reductions in malaria, acute respiratory infection (ARI) and gastrointestinal illness in an area of low malaria endemicity in Uganda. Data were analysed from a cohort study of male and female child and adult residents (n = 531) of 80 randomly-selected households in Nagongera sub-county, followed for 24 months (October 4, 2017 to October 31, 2019). Houses were classified as modern (brick walls, metal roof and closed eaves) or traditional (all other homes). Light trap collections of mosquitoes were done every two weeks in all sleeping rooms. Every four weeks, we measured malaria infection (using microscopy and qPCR to detect malaria parasites), incidence of malaria, ARI and gastrointestinal illness. We collected 15,780 adult female Anopheles over 7,631 nights. We collected 13,277 blood samples of which 10.2% (1,347) were positive for malaria parasites. Over 958 person years we diagnosed 38 episodes of uncomplicated malaria (incidence 0.04 episodes per person-year at risk), 2,553 episodes of ARI (incidence 2.7 episodes per person-year) and 387 episodes of gastrointestinal illness (incidence 0.4 episodes per person-year). Modern houses were associated with a 53% lower human biting rate compared to traditional houses (adjusted incidence rate ratio [aIRR] 0.47, 95% confidence interval [CI] 0.32-0.67, p<0.001) and a 24% lower incidence of gastrointestinal illness (aIRR 0.76, 95% CI 0.59-0.98, p = 0.04) but no changes in malaria prevalence, malaria incidence nor ARI incidence. House improvements may reduce mosquito-biting rates and gastrointestinal illness among children and adults. For the health sector to leverage Africa's housing modernization, research is urgently needed to identify the healthiest house designs and to assess their effectiveness across a range of epidemiological settings in sub-Saharan Africa.
RESUMO
Indoor residual spraying (IRS) and long-lasting insecticide-treated bednets (LLINs) are common tools for reducing malaria transmission. We studied a cohort in Uganda with universal access to LLINs after 5 years of sustained IRS to explore LLIN adherence when malaria transmission has been greatly reduced. Eighty households and 526 individuals in Nagongera, Uganda were followed from October 2017 -October 2019. Every two weeks, mosquitoes were collected from sleeping rooms and LLIN adherence the prior night assessed. Episodes of malaria were diagnosed using passive surveillance. Risk factors for LLIN non-adherence were evaluated using multi-level mixed logistic regression. An age-matched case-control design was used to measure the association between LLIN non-adherence and malaria. Across all time periods, and particularly in the last 6 months, non-adherence was higher among both children <5 years (OR 3.31, 95% CI: 2.30-4.75; p<0.001) and school-aged children 5-17 years (OR 6.88, 95% CI: 5.01-9.45; p<0.001) compared to adults. In the first 18 months, collection of fewer mosquitoes was associated with non-adherence (OR 3.25, 95% CI: 2.92-3.63; p<0.001), and, in the last 6 months, residents of poorer households were less adherent (OR 5.1, 95% CI: 1.17-22.2; p = 0.03). Any reported non-adherence over the prior two months was associated with a 15-fold increase in the odds of having malaria (OR 15.0, 95% CI: 1.95 to 114.9; p = 0.009). Knowledge about LLIN use was high, and the most frequently reported barriers to use included heat and low perceived risk of malaria. Children, particularly school-aged, participants exposed to fewer mosquitoes, and those from poorer households, were less likely to use LLINs. Non-adherence to LLINs was associated with an increased risk of malaria. Strategies, such as behavior change communications, should be prioritized to ensure consistent LLIN use even when malaria transmission has been greatly reduced.