Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Mater ; 20(12): 1643-1649, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34608283

RESUMO

Magnetism and spin-orbit coupling are two quintessential ingredients underlying topological transport phenomena in itinerant ferromagnets. When spin-polarized bands support nodal points/lines with band degeneracy that can be lifted by spin-orbit coupling, the nodal structures become a source of Berry curvature, leading to a large anomalous Hall effect. However, two-dimensional systems can possess stable nodal structures only when proper crystalline symmetry exists. Here we show that two-dimensional spin-polarized band structures of perovskite oxides generally support symmetry-protected nodal lines and points that govern both the sign and the magnitude of the anomalous Hall effect. To demonstrate this, we performed angle-resolved photoemission studies of ultrathin films of SrRuO3, a representative metallic ferromagnet with spin-orbit coupling. We show that the sign-changing anomalous Hall effect upon variation in the film thickness, magnetization and chemical potential can be well explained by theoretical models. Our work may facilitate new switchable devices based on ferromagnetic ultrathin films.

2.
Phys Rev Lett ; 127(25): 256401, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-35029413

RESUMO

We performed in situ angle-resolved photoemission spectroscopy (ARPES) and spin-resolved ARPES (SARPES) experiments to investigate the relationship between electronic band structures and ferromagnetism in SrRuO_{3} (SRO) thin films. Our high quality ARPES and SARPES results show clear spin-lifted band structures. The spin polarization is strongly dependent on momentum around the Fermi level, whereas it becomes less dependent at high-binding energies. This experimental observation matches our dynamical mean-field theory results very well. As temperature increases from low to the Curie temperature, spin-splitting gap decreases and band dispersions become incoherent. Based on the ARPES study and theoretical calculation results, we found that SRO possesses spin-dependent electron correlations in which majority and minority spins are localized and itinerant, respectively. Our finding explains how ferromagnetism and electronic structure are connected, which has been under debate for decades in SRO.

3.
Phys Rev Lett ; 123(10): 106401, 2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31573315

RESUMO

Motivated by the novel insulating state of Sr_{2}IrO_{4} from strong spin-orbit coupling (SOC), we investigate, by means of angle resolved photoemission, the metal-insulator transition (MIT) mechanism in Sr_{2-x}La_{x}RhO_{4} whose mother compound is isovalent and isostructural but has smaller SOC strength compared to Sr_{2}IrO_{4}. Transport and angle resolved photoemission results from single crystalline Sr_{2-x}La_{x}RhO_{4} revealed that the MIT occurs coincidentally with a multi- to single-band transition (Lifshitz transition) at x=0.4. Starting from x=0.4, there is a gradual but anomalous enhancement in the band gap size with additional electron doping, suggesting that the insulating phase in Sr_{2-x}La_{x}RhO_{4} is a new type which has been rarely investigated. These results suggest that the insulating phase in Sr_{2-x}La_{x}RhO_{4} is likely induced by the moderate SOC strength and electron doping effect from the La. Our findings not only elucidate the MIT mechanism in Sr_{2-x}La_{x}RhO_{4}, but may also open new avenues for novel MIT research in moderate SOC regimes.

4.
Phys Rev Lett ; 121(18): 186401, 2018 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-30444409

RESUMO

We investigate the hidden Berry curvature in bulk 2H-WSe_{2} by utilizing the surface sensitivity of angle resolved photoemission (ARPES). The symmetry in the electronic structure of transition metal dichalcogenides is used to uniquely determine the local orbital angular momentum (OAM) contribution to the circular dichroism (CD) in ARPES. The extracted CD signals for the K and K^{'} valleys are almost identical, but their signs, which should be determined by the valley index, are opposite. In addition, the sign is found to be the same for the two spin-split bands, indicating that it is independent of spin state. These observed CD behaviors are what are expected from Berry curvature of a monolayer of WSe_{2}. In order to see if CD-ARPES is indeed representative of hidden Berry curvature within a layer, we use tight binding analysis as well as density functional calculation to calculate the Berry curvature and local OAM of a monolayer WSe_{2}. We find that measured CD-ARPES is approximately proportional to the calculated Berry curvature as well as local OAM, further supporting our interpretation.

5.
Phys Chem Chem Phys ; 20(35): 23007-23012, 2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-30159559

RESUMO

A reduction in the electronic-dimensionality of materials is one method for achieving improvements in material properties. Here, a reduction in electronic-dimensionality is demonstrated using a simple hydrogen treatment technique. Quantum well states from hydrogen-treated bulk 2H-MoS2 are observed using angle resolved photoemission spectroscopy (ARPES). The electronic states are confined within a few MoS2 layers after the hydrogen treatment. A significant reduction in the band-gap can also be achieved after the hydrogen treatment, and both phenomena can be explained by the formation of sulfur vacancies generated by the chemical reaction between sulfur and hydrogen.

6.
Phys Rev Lett ; 119(26): 267402, 2017 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-29328701

RESUMO

The prototypical correlated metal Sr_{2}RhO_{4} was studied using optical and photoemission spectroscopy. At low energies and temperatures, the optical data reveal a complex, multicomponent response that on the surface points to an unconventional metallic state in this material. Via a comparison with photoemission, the anomalous optical response may be attributed to an unexpectedly strong interband transition near 180 meV between spin-orbit coupled bands that are nearly parallel along ΓX. This spin-orbit coupling effect is shown to occur in a number of related metallic ruthenates and explains the previously puzzling optical properties reported for these materials.

7.
Phys Rev Lett ; 118(13): 137001, 2017 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-28409951

RESUMO

We performed annealing and angle resolved photoemission spectroscopy studies on electron-doped cuprate Pr_{1-x}LaCe_{x}CuO_{4-δ} (PLCCO). It is found that the optimal annealing condition is dependent on the Ce content x. The electron number (n) is estimated from the experimentally obtained Fermi surface volume for x=0.10, 0.15 and 0.18 samples. It clearly shows a significant and annealing dependent deviation from the nominal x. In addition, we observe that the pseudo-gap at hot spots is also closely correlated with n; the pseudogap gradually closes as n increases. We established a new phase diagram of PLCCO as a function of n. Different from the x-based one, the new phase diagram shows similar antiferromagnetic and superconducting phases to those of hole doped ones. Our results raise a possibility for absence of disparity between the phase diagrams of electron- and hole-doped cuprates.

8.
Adv Sci (Weinh) ; 11(20): e2307288, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38509865

RESUMO

The anomalous Hall conductivity (AHC) in magnetic materials, resulting from inverted band topology, has emerged as a key adjustable function in spin-torque devices and advanced magnetic sensors. Among systems with near-half-metallicity and broken time-reversal symmetry, cobalt disulfide (CoS2) has proven to be a material capable of significantly enhancing its AHC. In this study, the AHC of CoS2 is empirically assessed by manipulating the chemical potential through Fe- (hole) and Ni- (electron) doping. The primary mechanism underlying the colossal AHC is identified through the application of density functional theory and tight-binding analyses. The main source of this substantial AHC is traced to four spin-polarized massive Dirac dispersions in the kz = 0 plane of the Brillouin zone, located slightly below the Fermi level. In Co0.95Fe0.05S2, the AHC, which is directly proportional to the momentum-space integral of the Berry curvature (BC), reached a record-breaking value of 2507 Ω-1cm-1. This is because the BCs of the four Dirac dispersions all exhibit the same sign, a consequence of the d-wave-like spin-orbit coupling among spin-polarized eg orbitals.

9.
Sci Rep ; 11(1): 1684, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33462247

RESUMO

It was recently reported that circular dichroism in angle-resolved photoemission spectroscopy (CD-ARPES) can be used to observe the Berry curvature in 2H-WSe2 (Cho et al. in Phys Rev Lett 121:186401, 2018). In that study, the mirror plane of the experiment was intentionally set to be perpendicular to the crystal mirror plane, such that the Berry curvature becomes a symmetric function about the experimental mirror plane. In the present study, we performed CD-ARPES on 2H-WSe2 with the crystal mirror plane taken as the experimental mirror plane. Within such an experimental constraint, two experimental geometries are possible for CD-ARPES. The Berry curvature distributions for the two geometries are expected to be antisymmetric about the experimental mirror plane and exactly opposite to each other. Our experimental CD intensities taken with the two geometries were found to be almost opposite near the corners of the 2D projected hexagonal Brillouin zone (BZ) and were almost identical near the center of the BZ. This observation is well explained by taking the Berry curvature or the atomic orbital angular momentum (OAM) into account. The Berry curvature (or OAM) contribution to the CD intensities can be successfully extracted through a comparison of the CD-ARPES data for the two experimental geometries. Thus, the CD-ARPES experimental procedure described provides a method for mapping Berry curvature in the momentum space of topological materials, such as Weyl semimetals.

10.
Nat Commun ; 12(1): 6171, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34702805

RESUMO

Correlated electrons in transition metal oxides exhibit a variety of emergent phases. When transition metal oxides are confined to a single-atomic-layer thickness, experiments so far have shown that they usually lose diverse properties and become insulators. In an attempt to extend the range of electronic phases of the single-atomic-layer oxide, we search for a metallic phase in a monolayer-thick epitaxial SrRuO3 film. Combining atomic-scale epitaxy and angle-resolved photoemission measurements, we show that the monolayer SrRuO3 is a strongly correlated metal. Systematic investigation reveals that the interplay between dimensionality and electronic correlation makes the monolayer SrRuO3 an incoherent metal with orbital-selective correlation. Furthermore, the unique electronic phase of the monolayer SrRuO3 is found to be highly tunable, as charge modulation demonstrates an incoherent-to-coherent crossover of the two-dimensional metal. Our work emphasizes the potentially rich phases of single-atomic-layer oxides and provides a guide to the manipulation of their two-dimensional correlated electron systems.

11.
Adv Mater ; 33(37): e2102958, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34319623

RESUMO

Inverted structures of common crystal lattices, referred to as antistructures, are rare in nature due to their thermodynamic constraints imposed by the switched cation and anion positions in reference to the original structure. However, a stable antistructure formed with mixed bonding characters of constituent elements in unusual valence states can provide unexpected material properties. Here, a heavy-fermion behavior of ferromagnetic gadolinium lattice in Gd3 SnC antiperovskite is reported, contradicting the common belief that ferromagnetic gadolinium cannot be a heavy-fermion system due to the deep energy level of localized 4f-electrons. The specific heat shows an unusually large Sommerfeld coefficient of ≈1114 mJ mol-1 K-2 with a logarithmic behavior of non-Fermi-liquid state. It is demonstrated that the heavy-fermion behavior in the non-Fermi-liquid state appears to arise from the hybridized electronic states of gadolinium 5d-electrons participating in metallic GdGd and covalent GdC bonds. These results accentuate the unusual chemical bonds in CGd6 octahedra with the dual characters of gadolinium 5d-electrons for the emergence of heavy fermions.

12.
Rev Sci Instrum ; 92(7): 073901, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34340442

RESUMO

In spectroscopic experiments, data acquisition in multi-dimensional phase space may require long acquisition time, owing to the large phase space volume to be covered. In such a case, the limited time available for data acquisition can be a serious constraint for experiments in which multidimensional spectral data are acquired. Here, taking angle-resolved photoemission spectroscopy (ARPES) as an example, we demonstrate a denoising method that utilizes deep learning as an intelligent way to overcome the constraint. With readily available ARPES data and random generation of training datasets, we successfully trained the denoising neural network without overfitting. The denoising neural network can remove the noise in the data while preserving its intrinsic information. We show that the denoising neural network allows us to perform a similar level of second-derivative and line shape analysis on data taken with two orders of magnitude less acquisition time. The importance of our method lies in its applicability to any multidimensional spectral data that are susceptible to statistical noise.

13.
Nat Commun ; 12(1): 1208, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33623023

RESUMO

Understanding characteristic energy scales is a fundamentally important issue in the study of strongly correlated systems. In multiband systems, an energy scale is affected not only by the effective Coulomb interaction but also by the Hund's coupling. Direct observation of such energy scale has been elusive so far in spite of extensive studies. Here, we report the observation of a kink structure in the low energy dispersion of NiS2-xSex and its characteristic evolution with x, by using angle resolved photoemission spectroscopy. Dynamical mean field theory calculation combined with density functional theory confirms that this kink originates from Hund's coupling. We find that the abrupt deviation from the Fermi liquid behavior in the electron self-energy results in the kink feature at low energy scale and that the kink is directly related to the coherence-incoherence crossover temperature scale. Our results mark the direct observation of the evolution of the characteristic temperature scale via kink features in the spectral function, which is the hallmark of Hund's physics in the multiorbital system.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa