Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Bioelectrochemistry ; 149: 108306, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36345111

RESUMO

The pathophysiological progress of Parkinson's disease leads through degeneration of dopaminergic neurons in the substantia nigra to complete cell death and lack of dopamine in the striatum where it modulates motor functions. Transplantation of dopaminergic stem cell-derived neurons is a possible therapy to restore dopamine levels. We have previously presented multifunctional pyrolytic carbon coated leaky optoelectrical fibers (LOEFs) with laser ablated micro-optical windows (µOWs) as carriers for channelrhodopsin-2 modified optogenetically active neurons for light-induced on-demand dopamine release and amperometric real-time detection. To increase the dopamine release by stimulating a larger neuronal population with light, we present here a novel approach to generate µOWs through laser ablation around the entire circumference of optical fibers to obtain Omni-LOEFs. Cyclic voltammetric characterization of the pyrolytic carbon showed that despite the increased number of µOWs, the electrochemical properties were not deteriorated. Finally, we demonstrate that the current recorded during real-time detection of dopamine upon light-induced stimulation of neurons differentiated on Omni-LOEFs is significantly higher compared to recordings from the same number of cells seeded on LOEFs with µOWs only on one side. Moreover, by varying the cell seeding density, we show that the recorded current is proportional to the dimension of the cell population.


Assuntos
Dopamina , Optogenética , Neurônios/fisiologia , Carbono/metabolismo
2.
Stem Cell Reports ; 16(2): 281-294, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33482100

RESUMO

Microglia have recently been established as key regulators of brain development. However, their role in neuronal subtype specification remains largely unknown. Using three different co-culture setups, we show that microglia-secreted factors enhance dopaminergic differentiation of somatic and induced pluripotent stem cell-derived human neural stem cells (NSCs). The effect was consistent across different NSC and microglial cell lines and was independent of prior microglial activation, although restricted to microglia of embryonic origin. We provide evidence that the effect is mediated through reduced cell proliferation and decreased apoptosis and necrosis orchestrated in a sequential manner during the differentiation process. tumor necrosis factor alpha, interleukin-1ß, and insulinlike growth factor 1 are identified as key mediators of the effect and shown to directly increase dopaminergic differentiation of human NSCs. These findings demonstrate a positive effect of microglia on dopaminergic neurogenesis and may provide new insights into inductive and protective factors that can stimulate in vitro derivation of dopaminergic neurons.


Assuntos
Diferenciação Celular , Proliferação de Células , Citocinas/metabolismo , Neurônios Dopaminérgicos/metabolismo , Células-Tronco Pluripotentes Induzidas/fisiologia , Microglia/fisiologia , Células-Tronco Neurais/metabolismo , Animais , Apoptose , Linhagem Celular , Células Cultivadas , Técnicas de Cocultura/métodos , Dopamina/metabolismo , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Interleucina-1beta/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neurogênese , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa