Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
J Am Chem Soc ; 145(36): 19912-19924, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37642197

RESUMO

The electrification of ammonia synthesis is a key target for its decentralization and lowering impact on atmospheric CO2 concentrations. The lithium metal electrochemical reduction of nitrogen to ammonia using alcohols as proton/electron donors is an important advance, but requires rather negative potentials, and anhydrous conditions. Organometallic electrocatalysts using redox mediators have also been reported. Water as a proton and electron donor has not been demonstrated in these reactions. Here a N2 to NH3 electrocatalytic reduction using an inorganic molecular catalyst, a tri-iron substituted polyoxotungstate, {SiFe3W9}, is presented. The catalyst requires the presence of Li+ or Na+ cations as promoters through their binding to {SiFe3W9}. Experimental NMR, CV and UV-vis measurements, and MD simulations and DFT calculations show that the alkali metal cation enables the decrease of the redox potential of {SiFe3W9} allowing the activation of N2. Controlled potential electrolysis with highly purified 14N2 and 15N2 ruled out formation of NH3 from contaminants. Importantly, using Na+ cations and polyethylene glycol as solvent, the anodic oxidation of water can be used as a proton and electron donor for the formation of NH3. In an undivided cell electrolyzer under 1 bar N2, rates of NH3 formation of 1.15 nmol sec-1 cm-2, faradaic efficiencies of ∼25%, 5.1 equiv of NH3 per equivalent of {SiFe3W9} in 10 h, and a TOF of 64 s-1 were obtained. The future development of suitable high surface area cathodes and well solubilized N2 and the use of H2O as the reducing agent are important keys to the future deployment of an electrocatalytic ammonia synthesis.

2.
Inorg Chem ; 62(9): 3761-3775, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36534941

RESUMO

A series of {V12}-nuclearity polyoxovanadate cages covalently functionalized with one or sandwiched by two phthalocyaninato (Pc) lanthanide (Ln) moieties via V-O-Ln bonds were prepared and fully characterized for paramagnetic Ln = SmIII-ErIII and diamagnetic Ln = LuIII, including YIII. The LnPc-functionalized {V12O32} cages with fully oxidized vanadium centers in the ground state were isolated as (nBu4N)3[HV12O32Cl(LnPc)] and (nBu4N)2[HV12O32Cl(LnPc)2] compounds. As corroborated by a combined experimental (EPR, DC and AC SQUID, laser photolysis transient absorption spectroscopy, and electrochemistry) and computational (DFT, MD, and model Hamiltonian approach) methods, the compounds feature intra- and intermolecular electron transfer that is responsible for a partial reduction at V(3d) centers from VV to VIV in the solid state and at high sample concentrations. The effects are generally Ln dependent and are clearly demonstrated for the (nBu4N)3[HV12O32Cl(LnPc)] representative with Ln = LuIII or DyIII. Intramolecular charge transfer takes place for Ln = LuIII and occurs from a Pc ligand via the Ln center to the {V12O32} core of the same molecule, whereas for Ln = DyIII, only intermolecular charge transfer is allowed, which is realized from Pc in one molecule to the {V12O32} core of another molecule usually via the nBu4N+ countercation. For all Ln but DyIII, two of these phenomena may be present in different proportions. Besides, it is demonstrated that (nBu4N)3[HV12O32Cl(DyPc)] is a field-induced single molecule magnet with a maximal relaxation time of the order 10-3 s. The obtained results open up the way to further exploration and fine-tuning of these three modular molecular nanocomposites regarding tailoring and control of their Ln-dependent charge-separated states (induced by intramolecular transfer) and relaxation dynamics as well as of electron hopping between molecules. This should enable us to realize ultra-sensitive polyoxometalate powered quasi-superconductors, sensors, and data storage/processing materials for quantum technologies and neuromorphic computing.

3.
J Phys Chem A ; 127(50): 10717-10731, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38084088

RESUMO

Electronic couplings in intermolecular electron and energy transfer processes calculated by six different existing computational techniques are compared to nonorthogonal configuration interaction for fragments (NOCI-F) results. The paper addresses the calculation of the electronic coupling in diketopyrrolopyrol, tetracene, 5,5'-difluoroindigo, and benzene-Cl for hole and electron transport, as well as the local exciton and singlet fission coupling. NOCI-F provides a rigorous computational scheme to calculate these couplings, but its computational cost is rather elevated. The here-considered ab initio Frenkel-Davydov (AIFD), Dimer projection (DIPRO), transition dipole moment coupling, Michl-Smith, effective Hamiltonian, and Mulliken-Hush approaches are computationally less demanding, and the comparison with the NOCI-F results shows that the NOCI-F results in the couplings for hole and electron transport are rather accurately predicted by the more approximate schemes but that the NOCI-F exciton transfer and singlet fission couplings are more difficult to reproduce.

4.
Acc Chem Res ; 54(17): 3377-3389, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34427081

RESUMO

This Account highlights recent experimental and theoretical work focusing on the development of polyoxometalates (POMs) as possible active switching units in what may be called "molecule-based memory cells". Herein, we critically discuss how multiply charged vanadium-containing POMs, which exhibit stable metal-oxo bonds and are characterized by the excellent ability to change their redox states without significant structural distortions of the central polyoxoanion core, can be immobilized best and how they may work optimally at appropriate surfaces. Furthermore, we critically discuss important issues and challenges on the long way toward POM-based nanoelectronics. This Account is divided into four sections shedding light on POM interplay in solution and on surfaces, ion soft-landing of mass-selected POMs on surfaces, electronic modification of POMs on surfaces, and computational modeling of POMs on surfaces. The sections showcase the complex nature of far-reaching POM interactions with the chemical surroundings in solution and the properties of POMs in the macroscopic environment of electrode surfaces. Section 2 describes complex relationships of POMs with their counter-cations, solvent molecules, and water impurities, which have been shown to exhibit a direct impact on the resulting surface morphology, where a concentration-dependent formation of micellar structures can be potentially observed. Section 3 gives insights into the ion soft-landing deposition of mass-selected POMs on electrode surfaces, which emerges as an appealing method because the simultaneous deposition of agglomeration-stimulating counter-cations can be avoided. Section 4 provides details of electronic properties of POMs and their modification by external electronic stimuli toward the development of multiple-state resistive (memristive) switches. Section 5 sheds light on issues of the determination of the electronic structure properties of POMs across their interfaces, which is difficult to address by experiment. The studies summarized in these four sections have employed various X-ray-scattering, microscopy, spectroscopy, and computational techniques for imaging of POM interfaces in solution and on surfaces to determine the adsorption type, agglomeration tendency, distribution, and oxidation state of deposited molecules. The presented research findings and conceptual ideas may assist experimentalists and theoreticians to advance the exploration of POM electrical conductivity as a function of metal redox and spin states and to pave the way for a realization of ("brain-inspired") POM-based memory devices, memristive POM-surface device engineering, and energy efficient nonvolatile data storage and processing technologies.

5.
Phys Chem Chem Phys ; 23(27): 14836-14844, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34212973

RESUMO

The effects of a gate potential on the conductance of two members of the EMAC family, Ru3(dpa)4(NCS)2 and its asymmetric analogue, [Ru3(npa)4(NCS)2]+, are explored with a density functional approach combined with non-equilibrium Green's functions. From a computational perspective, the inclusion of an electrochemical gate potential represents a significant challenge because the periodic treatment of the electrode surface resists the formation of charged species. However, it is possible to mimic the effects of the electrochemical gate by including a very electropositive or electronegative atom in the unit cell that will effectively reduce or oxidize the molecule under study. In this contribution we compare this approach to the more conventional application of a solid-state gate potential, and show that both generate broadly comparable results. For two extended metal atom chain (EMAC) compounds, Ru3(dpa)4(NCS)2 and [Ru3(npa)4(NCS)2], we show that the presence of a gate potential shifts the molecular energy levels in a predictable way relative to the Fermi level, with distinct peaks in the conductance trace emerging as these levels enter the bias window.

6.
Angew Chem Int Ed Engl ; 60(12): 6518-6525, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33350554

RESUMO

The optical and electrochemical properties of a series of polyoxometalate (POM) oxoclusters decorated with two bodipy (boron-dipyrromethene) light-harvesting units were examined. Evaluated here in this polyanionic donor-acceptor system is the effect of the solvent and associated counterions on the intramolecular photoinduced electron transfer. The results show that both solvents and counterions have a major impact upon the energy of the charge-transfer state by modifying the solvation shell around the POMs. This modification leads to a significantly shorter charge separation time in the case of smaller counterion and slower charge recombination in a less polar solvent. These results were rationalized in terms of Marcus theory and show that solvent and counterion both affect the driving force for photoinduced electron transfer and the reorganization energy. This was corroborated with theoretical investigations combining DFT and molecular dynamics simulations.

7.
Inorg Chem ; 58(6): 3881-3894, 2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-30830759

RESUMO

A series of stable reduction-oxidation states of the cagelike [I@VIV xVV18- xO42]5- x polyoxovanadate (POV) with x = 8, 10, 12, 16, and 18 were studied with density functional theory and molecular dynamics to gain insight into the structural and electron distribution characteristics of these metal-oxo clusters and to analyze the charge/redox-dependent assemblage processes in water and acetonitrile (MeCN) solutions. The calculations show that the interplay between the POV redox state (molecular charge) and the solvent polarity, countercation size, and hydrophilicity (or hydrophobicity) controls the POV agglomeration phenomena, which substantially differ between aqueous and MeCN media. In MeCN, agglomeration is more pronounced for intermediate-charged POVs, whereas in water, the lowest-charged POVs and organic countercations tend to agglomerate into a microphase. Tests made on wet MeCN show diminished agglomeration with respect to pure MeCN. Simulations with alkali countercations in water show that only the highest-charged POV can form agglomerates. The herein presented theoretical investigation aims to support experimental studies of POVs in the field of functional nanomaterials and surfaces, where controlled molecular deposition from the liquid phase onto solid substrates requires knowledge about the features of these metal-oxo clusters in discrete solutions.

8.
J Phys Chem A ; 123(8): 1538-1547, 2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30702886

RESUMO

Extended metal atom chains constitute an interesting class of molecules from both theoretical and applied points of view. In the chromium-based series Cr2M(dpa)4X2 (with M = Zn, Ni, Fe, Mn, Cr), the direct metal-metal interactions span a wide range of possibilities and so do their associated properties. The multiplicity and symmetry components of the metal-metal bond are herein analyzed via the effective bond order (EBO) concept using complete active space self-consistent field wave functions and compared with similar bimetallic Cr2L4X2 systems. The bond multiplicity follows a trend dominated by the Cr-Cr distance which, in turn, depends on the nature of the axial ligand (X). Cr2M compounds present asymmetric structures with virtually no interaction between the Cr2 unit and M, whereas fully symmetric structures with delocalized bonding among the three metals are also possible in Cr3 complexes. In such cases, a strategy that involves localization of the molecular orbitals into each Cr-Cr pair is applied to quantify the contribution of each pair to the overall metal-metal bond multiplicity.

9.
J Am Chem Soc ; 140(48): 16635-16640, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30418764

RESUMO

The sustainable development of IT-systems requires a quest for novel concepts to address further miniaturization, performance improvement, and energy efficiency of devices. The realization of these goals cannot be achieved without an appropriate functional material. Herein, we target the technologically important electron modification using single polyoxometalate (POM) molecules envisaged as smart successors of materials that are implemented in today's complementary metal-oxide-semiconductor (CMOS) technology. Lindqvist-type POMs were physisorbed on the Au(111) surface, preserving their structural and electronic characteristics. By applying an external voltage at room temperature, the valence state of the single POM molecule could be changed multiple times through the injection of up to 4 electrons. The molecular electrical conductivity is dependent on the number of vanadium 3d electrons, resulting in several discrete conduction states with increasing conductivity. This fundamentally important finding illustrates the far-reaching opportunities for POM molecules in the area of multiple-state resistive (memristive) switching.

10.
Phys Chem Chem Phys ; 20(26): 17847-17858, 2018 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-29923560

RESUMO

The electronic structure and magnetism of mixed-valence, host-guest polyoxovanadates {X@VO54} with diamagnetic (X =) ClO4- (Td, 1) and SCN- (C∞v, 2) template anions are assessed by means of two theoretical methods: density functional theory and effective Hamiltonian calculations. The results are compared to those obtained for another member of this family with X = VO2F2- (C2v, 3) (see P. Kozlowski et al., Phys. Chem. Chem. Phys., 2017, 19, 29767-29771), for which complementary data are also acquired. It is demonstrated that the X guest anions strongly influence the electronic and magnetic properties of the system, leading to various valence states of vanadium and modifying V-O-V exchange interactions. Our findings are concordant with and elucidate the available experimental data (see K. Y. Monakhov et al., Chem. - Eur. J., 2015, 21, 2387-2397).

11.
Phys Chem Chem Phys ; 19(44): 29767-29771, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29087415

RESUMO

The electronic structure and magnetism of the recently synthesised mixed-valent {VVO2F2@VO54} (1) host-guest polyoxovanadate envisaged as a potential building block of a molecule-based quantum computer are analysed using density functional theory (DFT) and effective Hamiltonian calculations. The form of the t-J like effective Hamiltonian has been inspired by the acquired DFT data, and the valence state used in DFT calculations has been suggested by the fits to the experimental magnetic data with the effective Hamiltonian. This self-consistent approach breaks through the magnetochemical limitations of vanadium-oxo cluster 1, giving results fully concordant with the experiment and allowing us to determine the valence state of 1, which contrary to other members of this host-guest family appears to feature 9 valence electrons.

12.
Inorg Chem ; 55(21): 11583-11592, 2016 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-27775333

RESUMO

Dipotassium cation (K+)-encapsulated Preyssler-type phosphotungstate, [P5W30O110K2]13-, was prepared by heating monobismuth (Bi3+)-encapsulated Preyssler-type phosphotungstate, [P5W30O110Bi(H2O)]12-, in acetate buffer in the presence of an excess amount of potassium cations. Characterization of the isolated potassium salt, K13[P5W30O110K2] (1a), and its acid form, H13[P5W30O110K2] (1b), by single crystal X-ray structure analysis, 31P and 183W nuclear magnetic resonance (NMR), Fourier transform infrared (FT-IR) spectroscopy, cyclic voltammetry (CV), high-resolution electrospray ionization mass spectroscopy (HR-ESI-MS), and elemental analysis revealed that two potassium cations are encapsulated in the Preyssler-type phosphotungstate molecule with formal D5h symmetry, which is the first example of a Preyssler-type compound with two encapsulated cations. Incorporation of two potassium cations enhances the thermal stability of the potassium salt, and the acid form shows catalytic activity for hydration of ethyl acetate. Packing of the Preyssler-type molecules was observed by high-resolution high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM).

13.
Inorg Chem ; 55(23): 12329-12347, 2016 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-27934444

RESUMO

Eight new members of a family of mixed-metal (Mo,W) polyoxometalates (POMs) with amino acid ligands have been synthesized and investigated in the solid state and solution using multiple physical techniques. While the peripheral POM structural framework is conserved, the different analogues vary in nuclearity of the central metal-oxo core, overall redox state, metal composition, and identity of the zwitterionic α-amino acid ligands. Structural investigations reveal site-selective substitution of Mo for W, with a strong preference for Mo to occupy the central metal-oxo core. This core structural unit is a closed tetrametallic loop in the blue reduced species and an open trimetallic loop in the colorless oxidized analogues. Density functional theory calculations suggest the core as the favored site of reduction and reveal that the corresponding molecular orbital is much lower in energy for a tetra- versus trimetallic core. The reduced species are diamagnetic, each with a pair of strongly antiferromagnetically coupled MoV centers in the tetrametallic core, while in the oxidized complexes all Mo is hexavalent. Solution small-angle X-ray scattering and circular dichroism (CD) studies indicate that the hybrid POM is stable in aqueous solution on a time scale of days within defined concentration and pH ranges, with the stability enhanced by the presence of excess amino acid. The CD experiments also reveal that the amino acid ligands readily exchange with other α-amino acids, and it is possible to isolate the products of amino acid exchange, confirming retention of the POM framework. Cyclic voltammograms of the reduced species exhibit an irreversible oxidation process at relatively low potential, but an equivalent reductive process is not evident for the oxidized analogues. Despite their overall structural similarity, the oxidized and 2e-reduced hybrid POMs are not interconvertible because of the respective open- versus closed-loop arrangement in the central metal-oxo cores.

14.
Chemistry ; 21(6): 2387-97, 2015 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-25403795

RESUMO

Mixed-valence polyoxovanadates(IV/V) have emerged as one of the most intricate class of supramolecular all-inorganic host species, able to encapsulate a wide variety of smaller guest templates during their self-assembly formation process. As showcased herein, the incorporation of guests, though governed solely by ultra-weak electrostatic and van der Waals interactions, can cause drastic effects on the electronic and magnetic characteristics of the shell complex of the polyoxovanadate. We address the question of methodology for the magnetochemical analysis of virtually isostructural {V(IV/V) 22 O54 }-type polyoxoanions of D2d symmetry enclosing diamagnetic VO2 F2 (-) (C2v ), SCN(-) (C∞v ), or ClO4 (-) (Td ) template anions. These induce different polarization effects related to differences in their geometric structures, symmetry, ion radii, and valence shells, eventually resulting in a supramolecular modulation of magnetic exchange between the V(3d) electrons that are partly delocalized over the {V22 O54 } shells. We also include the synthesis and characterization of the novel [V(V) O2 F2 @HV(IV) 8 V(V) 14 O54 ](6-) system that comprises the rarely encountered discrete difluorovanadate anion as a quasi-isolated guest species.

15.
Phys Chem Chem Phys ; 17(14): 8723-31, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25738630

RESUMO

We search for the best density functional theory strategy for the determination of (31)P nuclear magnetic resonance (NMR) chemical shifts, δ((31)P), in polyoxometalates. Among the variables governing the quality of the quantum modelling, we tackle herein the influence of the functional and the basis set. The spin-orbit and solvent effects were routinely included. To do so we analysed the family of structures α-[P2W18-xMxO62](n-) with M = Mo(VI), V(V) or Nb(V); [P2W17O62(M'R)](n-) with M' = Sn(IV), Ge(IV) and Ru(II) and [PW12-xMxO40](n-) with M = Pd(IV), Nb(V) and Ti(IV). The main results suggest that, to date, the best procedure for the accurate calculation of δ((31)P) in polyoxometalates is the combination of TZP/PBE//TZ2P/OPBE (for NMR//optimization step). The hybrid functionals (PBE0, B3LYP) tested herein were applied to the NMR step, besides being more CPU-consuming, do not outperform pure GGA functionals. Although previous studies on (183)W NMR suggested that the use of very large basis sets like QZ4P were needed for geometry optimization, the present results indicate that TZ2P suffices if the functional is optimal. Moreover, scaling corrections were applied to the results providing low mean absolute errors below 1 ppm for δ((31)P), which is a step forward in order to confirm or predict chemical shifts in polyoxometalates. Finally, via a simplified molecular model, we establish how the small variations in δ((31)P) arise from energy changes in the occupied and virtual orbitals of the PO4 group.

16.
Chemistry ; 20(13): 3769-81, 2014 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-24615946

RESUMO

The scaffold geometries, stability and magnetic features of the (pyridine-2-yl)methanolate (L) supported wheel-shaped transition-metal complexes with compositions [M6L12] (1), [Na⊂(ML2)6](+) (2), and [M'⊂(ML2)6](2+) (3), in which M=Co(II), Ni(II), Cu(II), and Zn(II) were investigated with density functional theory (DFT). The goals of this study are manifold: 1) To advance understanding of the magnetism in the synthesized compounds [Na⊂(ML2)6](+) and [M'⊂(ML2)6](2+) that were described in Angew. Chem. Int. Ed.- 2010, 49, 4443 (I-{Na⊂Ni6}, I-{Ni'⊂Ni6}) and Dalton Trans.- 2011, 40, 10526 (II-{Na⊂Co6}, II-{Co'⊂Co6}); 2) To disclose how the structural, electronic, and magnetic characteristics of 1, 2, and 3 change upon varying M(II) from d(7) (Co(2+)) to d(10) (Zn(2+)); 3) To estimate the influence of the Na(+) and M'(2+) ions (X(Q+)) occupying the central voids of 2 and 3 on the external and internal magnetic coupling interactions in these spin structures; 4) To assess the relative structural and electrochemical stabilities of 1, 2, and 3. In particular, we focus here on the net spin polarization, the determination of the strength and the sign of the exchange coupling energies, the rationalization of the nature of the magnetic coupling, and the ground-state structures of 1, 2, and 3. Our study combines the broken symmetry DFT approach and the model Hamiltonian methodology implemented in the computational framework CONDON 2.0 for the modeling of molecular spin structures, to interpret magnetic susceptibility measurements of I-{Na⊂Ni6} and I-{Ni'⊂Ni6}. We illustrate that whereas the structures, stability and magnetism of 1, 2, and 3 are indeed influenced by the nature of 3d transition-metals in the {M6} rims, the X(Q+) ions in the inner cavities of 2 and 3 impact these properties to an even larger degree. As exemplified by I-{Ni'⊂Ni6}, such heptanuclear complexes exhibit ground-state multiplets that cannot be described by simplistic model of spin-up and spin-down metal centers. Furthermore, we assess how future low-temperature susceptibility measurements at high magnetic fields can augment the investigation of compound 3 with M=Co, Ni.

17.
Chemistry ; 20(43): 14102-11, 2014 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-25204640

RESUMO

The first members of a promising new family of hybrid amino acid-polyoxometalates have emerged from a search for modular functional molecules. Incorporation of glycine (Gly) or norleucine (Nle) ligands into an yttrium-tungstoarsenate structural backbone, followed by crystallization with p-methylbenzylammonium (p-MeBzNH3(+)) cations, affords (p-MeBzNH3)6K2(GlyH)[As(III)4(Y(III)W(VI)3)W(VI)44Y(III)4O159(Gly)8(H2O)14]⋅47 H2O (1) and enantiomorphs (p-MeBzNH3)15(NleH)3[As(III)4(Mo(V)2Mo(VI)2)W(VI)44Y(III)4O160(Nle)9(H2O)11][As(III)4(Mo(VI)2W(VI)2)W(VI)44Y(III)4O160(Nle)9(H2O)11] (generically designated 2: L-Nle, 2 a; D-Nle, 2 b). An intensive structural, spectroscopic, electrochemical, magnetochemical and theoretical investigation has allowed the elucidation of site-selective metal substitution and photoreduction of the tetranuclear core of the hybrid polyanions. In the solid state, markedly different crystal packing is evident for the compounds, which indicates the role of noncovalent interactions involving the amino acid ligands. In solution, mass spectrometric and small-angle X-ray scattering studies confirm maintenance of the structure of the polyanions of 2, while circular dichroism demonstrates that the chirality is also maintained. The combination of all of these features in a single modular family emphasizes the potential of such hybrid polyoxometalates to provide nanoscale molecular materials with tunable properties.

18.
Inorg Chem ; 53(12): 5941-9, 2014 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-24892769

RESUMO

Polyoxometalates (POMs) are inorganic entities featuring extensive and sometimes unusual redox properties. In this work, several experimental techniques as well as density functional theory (DFT) calculations have been applied to identify and assess the relevance of factors influencing the redox potentials of POMs. First, the position of the Mo substituent atom in the Wells-Dawson structure, α1- or α2-P2W17Mo, determines the potential of the first 1e(-) reduction wave. For P2W(18-x)Mox systems containing more than one Mo atom, reduction takes place at successively more positive potentials. We attribute this fact to the higher electron delocalization when some Mo oxidizing atoms are connected. After having analyzed the experimental and theoretical data for the monosubstituted α1- and α2-P2W17Mo anions, some relevant facts arise that may help to rationalize the redox behavior of POMs in general. Three aspects concern the stability of systems: (i) the favorable electron delocalization, (ii) the unfavorable e(-)-e(-) electrostatic repulsion, and (iii) the favorable electron pairing. They explain trends such as the second reduction wave occurring at more positive potentials in α1- than in α2-P2W17Mo, and also the third electron reduction taking place at a less negative potential in the case of α2, reversing the observed behavior for the first and the second waves. In P2W17V derivatives, the nature of the first "d" electron is more localized because of the stronger oxidant character of V(V). Thus, the reduction potentials as well as the computed reduction energies (REs) for the second reduction of either isomer are closer to each other than in Mo-substituted POMs. This may be explained by the lack of electron delocalization in monoreduced P2W17V(IV) systems.

19.
Ann Neurol ; 72(6): 971-82, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23280845

RESUMO

OBJECTIVE: Friedreich ataxia (FRDA) is an autosomal recessive neurodegenerative disease caused in almost all cases by homozygosity for a GAA trinucleotide repeat expansion in the frataxin gene. Frataxin is a mitochondrial protein involved in iron homeostasis. FRDA patients have a high prevalence of diabetes, the pathogenesis of which is not known. We aimed to evaluate the relative contribution of insulin resistance and ß-cell failure and the pathogenic mechanisms involved in FRDA diabetes. METHODS: Forty-one FRDA patients, 26 heterozygous carriers of a GAA expansion, and 53 controls underwent oral and intravenous glucose tolerance tests. ß-Cell proportion was quantified in postmortem pancreas sections from 9 unrelated FRDA patients. Using an in vitro disease model, we studied how frataxin deficiency affects ß-cell function and survival. RESULTS: FRDA patients had increased abdominal fat and were insulin resistant. This was not compensated for by increased insulin secretion, resulting in a markedly reduced disposition index, indicative of pancreatic ß-cell failure. Loss of glucose tolerance was driven by ß-cell dysfunction, which correlated with abdominal fatness. In postmortem pancreas sections, pancreatic islets of FRDA patients had a lower ß-cell content. RNA interference-mediated frataxin knockdown impaired glucose-stimulated insulin secretion and induced apoptosis in rat ß cells and human islets. Frataxin deficiency sensitized ß cells to oleate-induced and endoplasmic reticulum stress-induced apoptosis, which could be prevented by the incretins glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide. INTERPRETATION: Pancreatic ß-cell dysfunction is central to diabetes development in FRDA as a result of mitochondrial dysfunction and higher sensitivity to metabolic and endoplasmic reticulum stress-induced ß-cell death.


Assuntos
Diabetes Mellitus/etiologia , Diabetes Mellitus/patologia , Ataxia de Friedreich/complicações , Células Secretoras de Insulina/fisiologia , Proteínas de Ligação ao Ferro/genética , Expansão das Repetições de Trinucleotídeos/genética , Tecido Adiposo/metabolismo , Adulto , Animais , Distribuição da Gordura Corporal , Metabolismo Energético/genética , Saúde da Família , Feminino , Citometria de Fluxo , Ataxia de Friedreich/genética , Teste de Tolerância a Glucose , Humanos , Hipoglicemiantes/farmacologia , Insulina/farmacologia , Resistência à Insulina/genética , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/patologia , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Ratos , Frataxina
20.
Chem Soc Rev ; 41(22): 7537-71, 2012 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-22885565

RESUMO

In the thematic review dedicated to polyoxometalate (POM) chemistry published in Chemical Reviews in 1998, no contribution was devoted to theory. This is not surprising because computational modelling of molecular metal-oxide clusters was in its infancy at that time. Nowadays, the situation has completely changed and modern computational methods have been successfully applied to study the structure, electronic properties, spectroscopy and reactivity of POM clusters. Indeed, the progress achieved during the past decade has been spectacular and herein we critically review the most important papers to provide the reader with an almost complete perspective of the field.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa