RESUMO
Hydrogenation is a promising technique to prepare black TiO2 (H-TiO2 ) for solar water splitting, however, there remain limitations such as severe preparation conditions and underexplored hydrogenation mechanisms to inefficient hydrogenation and poor photoelectrochemical (PEC) performance to be overcome for practical applications. Here, a room-temperature and rapid plasma hydrogenation (RRPH) strategy that realizes low-energy hydrogen ions of below 250 eV to fabricate H-TiO2 nanorods with controllable disordered shell, outperforming incumbent hydrogenations, is reported. The mechanisms of efficient RRPH and enhanced PEC activity are experimentally and theoretically unraveled. It is discovered that low-energy hydrogen ions with fast subsurface transport kinetics and shallow penetration depth features, enable them to directly penetrate TiO2 via unique multiple penetration pathways to form controllable disordered shell and suppress bulk defects, ultimately leading to improved PEC performance. Furthermore, the hydrogenation-property experiments reveal that the enhanced PEC activity is mainly ascribed to increasing band bending and bulk defect suppression, compared to reported H-TiO2 , a superior photocurrent density of 2.55 mA cm-2 at 1.23 VRHE is achieved. These findings demonstrate a sustainable strategy which offers great promise of TiO2 and other oxides to achieve further-improved material properties for broad practical applications.
RESUMO
The atomic structure of nanoparticles can be easily determined by transmission electron microscopy. However, obtaining atomic-resolution chemical information about the individual atomic columns is a rather challenging endeavor. Here, crystalline monodispersed spinel Fe3O4/Mn3O4 core-shell nanoparticles have been thoroughly characterized in a high-resolution scanning transmission electron microscope. Electron energy-loss spectroscopy (EELS) measurements performed with atomic resolution allow the direct mapping of the Mn2+/Mn3+ ions in the shell and the Fe2+/Fe3+ in the core structure. This enables a precise understanding of the core-shell interface and of the cation distribution in the crystalline lattice of the nanoparticles. Considering how the different oxidation states of transition metals are reflected in EELS, two methods of performing a local evaluation of the cation inversion in spinel lattices are introduced. Both methods allow the determination of the inversion parameter in the iron oxide core and manganese oxide shell, as well as detecting spatial variations in this parameter, with atomic resolution. X-ray absorption measurements on the whole sample confirm the presence of cation inversion. These results present a significant advance toward a better correlation of the structural and functional properties of nanostructured spinel oxides.
RESUMO
The physicochemical properties used in numerous advanced nanostructured devices are directly controlled by the oxidation states of their constituents. In this work we combine electron energy-loss spectroscopy, blind source separation, and computed tomography to reconstruct in three dimensions the distribution of Fe(2+) and Fe(3+) ions in a FeO/Fe3O4 core/shell cube-shaped nanoparticle with nanometric resolution. The results highlight the sharpness of the interface between both oxides and provide an average shell thickness, core volume, and average cube edge length measurements in agreement with the magnetic characterization of the sample.
RESUMO
We present a detailed examination of a multiple InxGa1-xN quantum well (QW) structure for optoelectronic applications. The characterization is carried out using scanning transmission electron microscopy (STEM), combining high-angle annular dark field (HAADF) imaging and electron energy loss spectroscopy (EELS). Fluctuations in the QW thickness and composition are observed in atomic resolution images. The impact of these small changes on the electronic properties of the semiconductor material is measured through spatially localized low-loss EELS, obtaining band gap and plasmon energy values. Because of the small size of the InGaN QW layers additional effects hinder the analysis. Hence, additional parameters were explored, which can be assessed using the same EELS data and give further information. For instance, plasmon width was studied using a model-based fit approach to the plasmon peak; observing a broadening of this peak can be related to the chemical and structural inhomogeneity in the InGaN QW layers. Additionally, Kramers-Kronig analysis (KKA) was used to calculate the complex dielectric function (CDF) from the EELS spectrum images (SIs). After this analysis, the electron effective mass and the sample absolute thickness were obtained, and an alternative method for the assessment of plasmon energy was demonstrated. Also after KKA, the normalization of the energy-loss spectrum allows us to analyze the Ga 3d transition, which provides additional chemical information at great spatial resolution. Each one of these methods is presented in this work together with a critical discussion of their advantages and drawbacks.
RESUMO
III-V nitride (AlGa)N distributed Bragg reflector devices are characterized by combined high-angle annular dark-field (HAADF) and electron energy loss spectroscopy (EELS) in the scanning transmission electron microscope. Besides the complete structural characterization of the AlN and GaN layers, the formation of AlGaN transient layers is revealed using Vegard law on profiles of the position of the bulk plasmon peak maximum. This result is confirmed by comparison of experimental and simulated HAADF intensities. In addition, we present an advantageous method for the characterization of nano-feature structures using low-loss EELS spectrum image (EEL-SI) analysis. Information from the materials in the sample is extracted from these EEL-SI at high spatial resolution.The log-ratio formula is used to calculate the relative thickness, related to the electron inelastic mean free path. Fitting of the bulk plasmon is performed using a damped plasmon model (DPM) equation. The maximum of this peak is related to the chemical composition variation using the previous Vegard law analysis. In addition, within the context of the DPM, information regarding the structural properties of the material can be obtained from the lifetime of the oscillation. Three anomalous segregation regions are characterized, revealing formation of metallic Al islands.
RESUMO
In this work, the effect of CuPtB ordering on the optoelectronic properties of Ga0.5In0.5P is studied by combining in situ transmission electron microscopy measurements and density functional theory (DFT) calculations. GaInP layers were grown by metal organic vapor phase epitaxy with a CuPtB single-variant-induced ordering due to the intentional misorientation of the Ge(001) substrate. Moreover, the degree of order was controlled using Sb as the surfactant without changing other growth parameters. The presence of antiphase ordered domain boundaries (APDBs) between the ordered domains is studied as a function of the order parameter. The in situ electrical measurements on a set of samples with controlled degree of order evidence a clear anisotropic electrical conductivity at the nanoscale between the [110] and [1-10] orientations, which is discussed in terms of the presence of APDBs as a function of the degree of order. Additionally, DFT calculations allow to determine the differences in the optoelectronic properties of the compound with and without ordering through the determination of the dielectric function. Finally, the anisotropy of the electrical conductivity for the ordered case is also discussed in terms of the effective mass calculated from the band structure on specific k-paths. By comparing the experimental measurements and the theoretical calculations, two factors have been presented as the main contributors of the electric conductivity anisotropy of CuPtB-type ordered GaInP thin films: antiphase boundaries that separate domains with uniform order (APDBs) and the anisotropy of the effective mass due to the alternating of In/Ga rich planes.
RESUMO
The nanoscale magnetic configuration of self-assembled groups of magnetite 40 nm cubic nanoparticles has been investigated by means of electron holography in the transmission electron microscope (TEM). The arrangement of the cubes in the form of chains driven by the alignment of their dipoles of single nanocubes is assessed by the measured in-plane magnetic induction maps, in good agreement with theoretical calculations.
RESUMO
Tuning oxygen mass transport properties at the nanoscale offers a promising approach for developing high performing energy materials. A number of strategies for engineering interfaces with enhanced oxygen diffusivity and surface exchange have been proposed. However, the origin and the magnitude of such local effects remain largely undisclosed to date due to the lack of direct measurement tools with sufficient resolution. In this work, atom probe tomography with sub-nanometer resolution is used to study oxygen mass transport on oxygen-isotope exchanged thin films of lanthanum chromite. A direct 3D visualization of nanoscaled highly conducting oxygen incorporation pathways along grain boundaries, with reliable quantification of the oxygen kinetic parameters and correlative link to local chemistries, is presented. Combined with finite element simulations of the exact nanostructure, isotope exchange-atom probe tomography allowed quantifying an enhancement in the grain boundary oxygen diffusivity and in the surface exchange coefficient of lanthanum chromite of about 4 and 3 orders of magnitude, respectively, compared to the bulk. This remarkable increase of the oxygen kinetics in an interface-dominated material is unambiguously attributed to grain boundary conduction highways thanks to the use of a powerful technique that can be straightforwardly extended to the study of currently inaccessible multiple nanoscale mass transport phenomena.
RESUMO
Interface-dominated materials such as nanocrystalline thin films have emerged as an enthralling class of materials able to engineer functional properties of transition metal oxides widely used in energy and information technologies. In particular, it has been proven that strain-induced defects in grain boundaries of manganites deeply impact their functional properties by boosting their oxygen mass transport while abating their electronic and magnetic order. In this work, the origin of these dramatic changes is correlated for the first time with strong modifications of the anionic and cationic composition in the vicinity of strained grain boundary regions. We are also able to alter the grain boundary composition by tuning the overall cationic content in the films, which represents a new and powerful tool, beyond the classical space charge layer effect, for engineering electronic and mass transport properties of metal oxide thin films useful for a collection of relevant solid-state devices.
RESUMO
Recently, colored H-doped TiO2 (H-TiO2) has demonstrated enhanced photoelectrochemical (PEC) performance due to its unique crystalline core-disordered shell nanostructures and consequent enhanced conduction behaviors between the core-shell homo-interfaces. Although various hydrogenation approaches to obtain H-TiO2 have been developed, such as high temperature hydrogen furnace tube annealing, high pressure hydrogen annealing, hydrogen-plasma assisted reaction, aluminum reduction and electrochemical reduction etc., there is still a lack of a hydrogenation approach in a controlled manner where all processing parameters (temperature, time and hydrogen flux) were precisely controlled in order to improve the PEC performance of H-TiO2 and understand the physical insight of enhanced PEC performance. Here, we report for the first time a controlled and local rapid thermal annealing (RTA) approach to prepare hydrogenated core-shell H-TiO2 nanorods grown on F:SnO2 (FTO) substrate in order to address the degradation issue of FTO in the typical TiO2 nanorods/FTO system observed in the conventional non-RTA treated approaches. Without the FTO degradation in the RTA approach, we systematically studied the intrinsic relationship between the annealing temperature, structural, optical, and photoelectrochemical properties in order to understand the role of the disordered shell on the improved photoelectrochemical behavior of H-TiO2 nanorods. Our investigation shows that the improvement of PEC performance could be attributed to (i) band gap narrowing from 3.0 to 2.9 eV; (ii) improved optical absorption in the visible range induced by the three-dimensional (3D) morphology and rough surface of the disordered shell; (iii) increased proper donor density; (iv) enhanced electron-hole separation and injection efficiency due to the formation of disordered shell after hydrogenation. The RTA approach developed here can be used as a suitable hydrogenation process for TiO2 nanorods/FTO system for important applications such as photocatalysis, hydrogen generation from water splitting and solar energy conversion.
RESUMO
The intimate relationship between stoichiometry and physicochemical properties in transition-metal oxides makes them appealing as tunable materials. These features become exacerbated when dealing with nanostructures. However, due to the complexity of nanoscale materials, establishing a distinct relationship between structure-morphology and functionalities is often complicated. In this regard, in the FexO/Fe3O4 system a largely unexplained broad dispersion of magnetic properties has been observed. Here we show, thanks to a comprehensive multi-technique approach, a clear correlation between the magneto-structural properties in large (45 nm) and small (9 nm) FexO/Fe3O4 core/shell nanoparticles that can explain the spread of magnetic behaviors. The results reveal that while the FexO core in the large nanoparticles is antiferromagnetic and has bulk-like stoichiometry and unit-cell parameters, the FexO core in the small particles is highly non-stoichiometric and strained, displaying no significant antiferromagnetism. These results highlight the importance of ample characterization to fully understand the properties of nanostructured metal oxides.
RESUMO
Electron Energy Loss Spectroscopy (EELS) in a transmission electron microscope offers the possibility of extracting high accuracy maps of composition and electronic properties through EELS spectrum images (EELS-SI). Acquiring EELS-SI for different tilt angles, a 3D tomographic reconstruction of EELS information can be achieved. In the present work we show that an EELS spectrum volume (EELS-SV), a 4D dataset where every voxel contains a full EELS spectrum, can be reconstructed from the EELS-SI tilt series by the application of multivariate analysis. We apply this novel approach to characterize a nanocomposite material consisting of CoFe2O4 nanocolumns embedded in a BiFeO3 matrix grown on a LaNiO3 buffered LaAlO3 (001) substrate.
RESUMO
In this work we apply low-loss electron energy loss spectroscopy (EELS) to probe the structural and electronic properties of single silicon nanocrystals (NCs) embedded in three different dielectric matrices (SiO2, SiC and Si(3)N(4)). A monochromated and aberration corrected transmission electron microscope has been operated at 80 kV to avoid sample damage and to reduce the impact of radiative losses. We present a novel approach to disentangle the electronic features corresponding to pure Si-NCs from the surrounding dielectric material contribution through an appropriate computational treatment of hyperspectral datasets. First, the different material phases have been identified by measuring the plasmon energy. Due to the overlapping of Si-NCs and dielectric matrix information, the variable shape and position of mixed plasmonic features increases the difficulty of non-linear fitting methods to identify and separate the components in the EELS signal. We have managed to solve this problem for silicon oxide and nitride systems by applying multivariate analysis methods that can factorize the hyperspectral datacubes in selected regions. By doing so, the EELS spectra are re-expressed as a function of abundance of Si-NC-like and dielectric-like factors. EELS contributions from the embedded nanoparticles as well as their dielectric surroundings are thus studied in a new light, and compared with the dielectric material and crystalline silicon from the substrate. Electronic properties such as band gaps and plasmon shifts can be obtained by a straightforward examination. Finally, we have calculated the complex dielectric functions and the related electron effective mass and density of valence electrons.
RESUMO
3D single-crystalline, well-aligned GaN-InGaN rod arrays are fabricated by selective area growth (SAG) metal-organic vapor phase epitaxy (MOVPE) for visible-light water splitting. Epitaxial InGaN layer grows successfully on 3D GaN rods to minimize defects within the GaN-InGaN heterojunctions. The indium concentration (In â¼ 0.30 ± 0.04) is rather homogeneous in InGaN shells along the radial and longitudinal directions. The growing strategy allows us to tune the band gap of the InGaN layer in order to match the visible absorption with the solar spectrum as well as to align the semiconductor bands close to the water redox potentials to achieve high efficiency. The relation between structure, surface, and photoelectrochemical property of GaN-InGaN is explored by transmission electron microscopy (TEM), electron energy loss spectroscopy (EELS), Auger electron spectroscopy (AES), current-voltage, and open circuit potential (OCP) measurements. The epitaxial GaN-InGaN interface, pseudomorphic InGaN thin films, homogeneous and suitable indium concentration and defined surface orientation are properties demanded for systematic study and efficient photoanodes based on III-nitride heterojunctions.
RESUMO
High resolution scanning transmission electron microscopy with an aberration corrected and monochromated instrument has been used for the assessment of the silicon-based active layer stack for novel optoelectronic devices. This layer contains a multilayer structure consisting of alternate thin layers of pure silica (SiO2) and silicon-rich silicon oxide (SRO, SiOx). Upon high temperature annealing the SRO sublayer segregates into a Si nanocluster (Si-nc) precipitated phase and a SiO2 matrix. Additionally, erbium (Er) ions have been implanted and used as luminescent centres in order to obtain narrow emission at 1.54 µm. Our study exploits the combination of high angle annular dark field (HAADF) imaging with a sub-nanometer electron probe and electron energy loss spectroscopy (EELS) with an energy resolution below 0.2 eV. The structural and chemical information is obtained from the studied multilayer structure. In addition, the instrumental techniques for calibration, deconvolution, fitting and analysis of the EELS spectra are explained in detail. The spatial distribution of the Si-nanoclusters (Si-ncs) and the SiO2 barriers is accurately delimited in the multilayer. Additionally, the quality of the studied multilayer in terms of composition, roughness and defects is analysed and discussed. Er clusterization has not been observed; even so, blue-shifted plasmon and interband transition energies for silica are measured, in the presence of Er ions and sizable nanometer-size effects.