Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Tipo de estudo
Tipo de documento
Intervalo de ano de publicação
1.
J Invertebr Pathol ; 161: 14-22, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30586567

RESUMO

Carotenoid sources in shrimp diets have shown to be effective for improving survival, growth, reproductive capacity, stress resistance, and also for diminishing disease. Dunaliella sp. is known to have high levels of ß-carotenes, which works as pro-vitamin A, enhancing the immune response in shrimp. However, the administration of Dunaliella sp. in shrimp diet needs to be evaluated to determine the appropriate dose and frequency of administration needed to optimize performance in cultured white shrimp. Diets with three different concentrations of Dunaliella sp. flour (1.5, 2 and 3%) were tested, and each one was administered at three different time frequencies: daily, and at 3- and 7-days intervals. Shrimp fed for 20 days were then infected with Vibrio parahaemolyticus (1 × 106 CFU/mL). Hemolymph parameters including protein, glucose, lactate, cholesterol and triglycerides were analyzed to evaluate shrimp stress status. Additionally, L. vannamei innate non-specific immune response was examined by evaluating the activity of prophenoloxidase (proPO), phenoloxidase (PO) and superoxide dismutase (SOD) in hemolymph; shrimp survival was also recorded. Survival after infection with V. parahaemolyticus was higher for shrimp fed with diets consisting of 2% Dunaliella sp. administered every 3 and 7 days. Shrimp fed a diet consisting of 2% or 3% Dunaliella sp. administered every third day showed positive physiological and immune responses to infection. A decrease in lipid oxidation in plasma triglycerides was observed at 48 h post inoculation in shrimp fed at all diets regimes due to Dunaliella sp. antioxidant action. Experimental results suggest the importance of Dunaliella sp. dosage and feeding frequency in L. vannamei diet to improve the survival and immune response.


Assuntos
Microalgas , Penaeidae , Vibrioses/imunologia , Vibrio parahaemolyticus , beta Caroteno/administração & dosagem , Animais , Aquicultura , Catecol Oxidase/sangue , Clorofíceas/metabolismo , Dieta/veterinária , Suplementos Nutricionais , Precursores Enzimáticos/sangue , Hemolinfa/metabolismo , Imunidade Inata , Microalgas/metabolismo , Monofenol Mono-Oxigenase/sangue , Penaeidae/imunologia , Penaeidae/microbiologia , Alimentos Marinhos , Superóxido Dismutase/sangue , Triglicerídeos/sangue , beta Caroteno/farmacologia
2.
J Invertebr Pathol ; 148: 118-123, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28625840

RESUMO

Survival of Litopenaeus vannamei was evaluated during a Vibrio parahaemolyticus infection. This bacteria has been causing significant economic losses in the shrimp industry due to the appearance of early mortality syndrome (EMS), also known as acute hepatopancreatic necrosis disease (AHPND). Control of bacteria in ponds is difficult to achieve with antibiotics due to environmental infections and antibiotic resistance. New methods have been proposed to control and prevent the impact of bacterial infections. The physiological response indicated by plasma biochemical parameters in shrimp can determine their health and stress status. Meanwhile, shrimp immunology is the key factor in establishing strategies to control diseases. Immunostimulants are the best alternative to antibiotics to prevent or minimize disease damage, and at the same time, these stimulants improve the immune system in shrimp. Four diets containing 1.5, 2, 2.5 and 3% of Dunaliella sp. with high ß-carotene content were tested in the present study. After 20days of feeding, organisms were infected with V. parahaemolyticus. Protein, glucose, lactate, triglyceride and cholesterol levels, as well as activity of prophenoloxidase and phenoloxidase, were determined 48 h post-infection (hpi). Shrimp fed a diet with 3% Dunaliella sp. showed the highest survival. Glucose, cholesterol, and triglyceride levels, as well as prophenoloxidase and phenoloxidase activity, were not observed to be suitable indicators during this bacterial infection. The results indicated that the inclusion of Dunaliella sp. in diet increases survival in L. vannamei infected with V. parahaemolyticus.


Assuntos
Clorófitas , Penaeidae/imunologia , Penaeidae/microbiologia , Vibrio parahaemolyticus , beta Caroteno/administração & dosagem , Animais , Alimentos Marinhos
3.
Int J Mol Sci ; 17(8)2016 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-27483255

RESUMO

A sulfated polysaccharide extracted from Navicula sp. presented a yield of 4.4 (% w/w dry biomass basis). Analysis of the polysaccharide using gas chromatography showed that this polysaccharide contained glucose (29%), galactose (21%), rhamnose (10%), xylose (5%) and mannose (4%). This polysaccharide presented an average molecular weight of 107 kDa. Scanning electron microscopy (SEM) micrographs showed that the lyophilized Navicula sp. polysaccharide is an amorphous solid with particles of irregular shapes and sharp angles. The polysaccharide at 1% (w/v) solution in water formed gels in the presence of 0.4% (w/v) FeCl3, showing elastic and viscous moduli of 1 and 0.7 Pa, respectively. SEM analysis performed on the lyophilized gel showed a compact pore structure, with a pore size of approximately 150 nm. Very few studies on the gelation of sulfated polysaccharides using trivalent ions exist in the literature, and, to the best of our knowledge, this study is the first to describe the gelation of sulfated polysaccharides extracted from Navicula sp.


Assuntos
Diatomáceas/química , Compostos Férricos/farmacologia , Géis/química , Polissacarídeos/química , Reologia , Sulfatos/química , Cromatografia Gasosa , Diatomáceas/ultraestrutura , Microscopia Eletrônica de Varredura , Espectroscopia de Infravermelho com Transformada de Fourier
4.
Rev Biol Trop ; 62(3): 969-76, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25412529

RESUMO

Mollusks are some of the most important, abundant and diverse organisms inhabiting not only aquatic ecosystems, but also terrestrial environments. Recently, they have been used for bioremediation of aquaculture effluents; nevertheless, for that purpose it is necessary to analyze the capacity of a particular species. In this context, an experimental investigation was developed to evaluate the performance of two bivalves C. gnidia and D. ponderosa, collected from areas with or without shrimp aquaculture effluents. For this, the filtration capacity (as clearance rate) as well as the oxygen consumption and ammonia excretion rates were measured following standard methods. The clearance rate was significantly higher for D. ponderosa from impacted areas, when com- pared to C. gnidia, from both areas. Contrarily, the oxygen consumption was greater for C. gnidia from impacted areas compared to D. ponderosa from both areas. The same tendency was observed for the ammonia excretion with the highest rates observed for C. gnidia from impacted areas, whereas no differences were observed among D. ponderosa from both areas. The results suggest that both species developed different strategies to thrive and survive under the impacted conditions; D. ponderosa improved its filtration efficiency, while C. gnidia modified its oxygen consumption and ammonia excretion. We concluded that both species, and particularly D. ponderosa, can be used for bioremediation purposes.


Assuntos
Compostos de Amônio/metabolismo , Aquicultura/métodos , Bivalves/fisiologia , Consumo de Oxigênio/fisiologia , Penaeidae/crescimento & desenvolvimento , Animais , Biodegradação Ambiental , Bivalves/classificação , Purificação da Água/métodos
5.
Gene ; 924: 148589, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-38777108

RESUMO

Nitrogen is the principal nutrient deficiency that increases lipids and carbohydrate content in diatoms but negatively affects biomass production. Marine diatom Chaetoceros muelleri is characterized by lipid and carbohydrate accumulation under low nitrogen concentration without affecting biomass. To elucidate the molecular effects of nitrogen concentrations, we performed an RNA-seq analysis of C. muelleri grown under four nitrogen concentrations (3.53 mM, 1.76 mM, 0.44 mM, and 0.18 mM of NaNO3). This research revealed that changes in global transcription in C. muelleri are differentially expressed by nitrogen concentration. "Energetic metabolism", "Carbohydrate metabolism" and "Lipid metabolism" pathways were identified as the most upregulated by N deficiency. Due to N limitation, alternative pathways to self-supply nitrogen employed by microalgal cells were identified. Additionally, nitrogen limitation decreased chlorophyll content and caused a greater response at the transcriptional level with a higher number of unigenes differentially expressed. By contrast, the highest N concentration (3.53 mM) recorded the lowest number of differentially expressed genes. Amt1, Nrt2, Fad2, Skn7, Wrky19, and Dgat2 genes were evaluated by RT-qPCR. In conclusion, C. muelleri modify their metabolic pathways to optimize nitrogen utilization and minimize nitrogen losses. On the other hand, the assembled transcriptome serves as the basis for metabolic engineering focused on improving the quantity and quality of the diatom for biotechnological applications. However, proteomic and metabolomic analysis is also required to compare gene expression, protein, and metabolite accumulation.


Assuntos
Diatomáceas , Nitrogênio , Transcriptoma , Nitrogênio/metabolismo , Diatomáceas/metabolismo , Diatomáceas/genética , Perfilação da Expressão Gênica/métodos , Metabolismo dos Lipídeos/genética , Metabolismo dos Carboidratos/genética , Redes e Vias Metabólicas/efeitos dos fármacos , Redes e Vias Metabólicas/genética , Biomassa
6.
Metabolites ; 13(3)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36984806

RESUMO

There are multiple associations between the different blood groups (ABO and RhD) and the incidence of oxidative stress-related diseases, such as certain carcinomas and COVID-19. Bioactive compounds represent an alternative to its prevention and treatment. Phycobiliproteins (PBP) are bioactive compounds present in the microalga Porphyridium cruentum and, despite its antioxidant activity, their inhibitory effect on hemolysis has not been reported. The aim of this work was to evaluate the erythroprotective potential of phycobiliproteins from P. cruentum in different blood groups. The microalga was cultured in F/2 medium under controlled laboratory conditions. Day 10 of culture was determined as the harvest point. The microalgal biomass was lyophilized and a methanolic (MetOH), Tris HCl (T-HCl), and a physiological solution (PS) ultrasound-assisted extraction were performed. Extract pigments were quantified by spectrophotometry. The antioxidant activity of the extracts was evaluated with the ABTS+•, DPPH•, and FRAP methods, finding that the main antioxidant mechanism on the aqueous extracts was HAT (hydrogen atom transfer), while for MetOH it was SET (single electron transfer). The results of the AAPH, hypotonicity, and heat-induced hemolysis revealed a probable relationship between the different antigens (ABO and RhD) with the antihemolytic effect, highlighting the importance of bio-directed drugs.

7.
Metabolites ; 12(12)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36557241

RESUMO

Previous studies have reported that different blood groups are associated with the risk of chronic degenerative diseases that mainly involve inflammation and neoplastic processes. We investigate the relationship between blood groups and the erythroprotective effect of extracts from Navicula incerta against oxidative damage as a proposal to develop drugs designed for people with a specific blood type related to chronic pathology. The study was carried out through the elucidation of the erythroprotective potential, anti-inflammatory and antiproliferative activity of Navicula incerta. Research suggests that the presence or absence of certain blood groups increases or decreases the abilities of certain phytochemicals to inhibit oxidative stress, which is related to the systemic inflammatory response involved in the development of different types of cancer. The pigment-rich extracts from Navicula incerta inhibit ROO•- induced oxidative stress in human erythrocytes on the A RhD+ve antigen without compromising the structure of the cell membrane. This result is very important, since the A antigen is related to the susceptibility of contracting prostate cancer. Similarly, it was possible to inhibit the proliferation of cervical (HeLa) and prostate (PC-3) carcinoma. The combinatorial analysis of different biological activities can help design phytochemicals as new candidates for preventive drugs treating the chronic degenerative diseases associated with a specific blood group.

8.
Biology (Basel) ; 10(7)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206287

RESUMO

Diatoms are the most abundant group of phytoplankton, and their success lies in their significant adaptation ability to stress conditions, such as nutrient limitation. Phosphorus (P) is a key nutrient involved in the transfer of energy and the synthesis of several cellular components. Molecular and biochemical mechanisms related to how diatoms cope with P deficiency are not clear, and research into this has been limited to a few species. Among the molecular responses that have been reported in diatoms cultured under P deficient conditions is the upregulation of genes encoding enzymes related to the transport, assimilation, remobilization and recycling of this nutrient. Regarding biochemical responses, due to the reduction of the requirements for carbon structures for the synthesis of proteins and phospholipids, more CO2 is fixed than is consumed by the Calvin cycle. To deal with this excess, diatoms redirect the carbon flow toward the synthesis of storage compounds such as triacylglycerides and carbohydrates, which are excreted as extracellular polymeric substances. This review aimed to gather all current knowledge regarding the biochemical and molecular mechanisms of diatoms related to managing P deficiency in order to provide a wider insight into and understanding of their responses, as well as the metabolic pathways affected by the limitation of this nutrient.

9.
Saudi J Biol Sci ; 28(2): 1401-1416, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33613070

RESUMO

Navicula incerta is a marine microalga distributed in Baja California, México, commonly used in aquaculture nutrition, and has been extended to human food, biomedical, and pharmaceutical industries due to its high biological activity. Therefore, the study aimed to optimize culture conditions to produce antioxidant pigments. A central composite experimental design and response surface methodology (RSM) was employed to analyze the best culture conditions. The medium (nitrogen-deficient concentrations), salinity (PSU = Practical Salinity Unity [g/kg]), age of culture (days), and solvent extraction (ethanol, methanol, and acetone) were the factors used for the experiment. Chlorophyll a (Chl a) and total carotenoids (T-Car), determined spectroscopically, were used as the response variables. The antioxidant capacity was evaluated by DPPH• and ABTS•+ radical inhibition, FRAP, and anti-hemolytic activity. According to the overlay plots, the optimum growth conditions for Chl a and T-Car production were the following conditions: medium = 0.44 mol·L-1 of NaNO3, salinity = 40 PSU, age of culture: 3.5 days, and solvent = methanol. The pigment extracts obtained in these optimized conditions had high antioxidant activity in ABTS•+ (86.2-92.1% of inhibition) and anti-hemolytic activity (81.8-96.7% of hemolysis inhibition). Low inhibition (33-35%) was observed in DPPH•. The highest value of FRAP (766.03 ± 16.62 µmol TE/g) was observed in the acetonic extract. The results demonstrated that RSM could obtain an extract with high antioxidant capacity with potential applications in the biomedical and pharmaceutical industry, which encourages the use of natural resources for chemoprevention of chronic-degenerative pathologies.

10.
Rev. biol. trop ; Rev. biol. trop;67(3)jun. 2019.
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1507536

RESUMO

Benthic microalgae have the natural capacity to adhere to a diversity of fixed submerged substrates to form biofilms, which have important roles not only in natural ecosystems, but also in aquaculture systems. An experimental investigation was performed to assess the biofilm-forming capacity of two microalgae (Navicula incerta and Navicula sp.) on three different substrates (plastic net, fabric, and wood) under controlled temperature and light conditions. The substrates were arranged on curtains suspended from a wood stick, into plastic aquariums (45 L in capacity) filled with filtered marine water enriched with F/2 medium. The trial was carried out until the exponential growing phase of the microalgae was reached. After that, the incorporated biomass was gravimetrically calculated, and its biochemical composition was determined by standard methods. The greatest amount of incorporated dry matter was observed for Navicula sp. on fabric and the lowest was observed for wood. The highest number of cells associated with the biofilm was obtained for Navicula sp. on the plastic net (1.24 x 109 cells/m2), while the lowest was recorded for Navicula sp. on the wood (1.43 x 108 cells/m2). Significant differences in organic matter were found among the substrates, with the highest values for N. incerta on the fabric (3.22 g/m2) and the lowest for Navicula sp. on the wood (0.02 g/m2). The best biochemical profiles among the formed biofilms were observed for N. incerta on the plastic net and Navicula sp. on the fabric. The plastic net was considered the best substrate because of the stability of the biofilm and the easiness of harvesting the biomass.


Las microalgas bentónicas tienen la capacidad natural de adherirse a diversos sustratos fijos sumergidos para formar biopelículas, las cuales tienen roles importantes no solo en ecosistemas naturales sino también en sistemas de producción acuícolas. Se llevó a cabo una investigación experimental para evaluar la capacidad formadora de biopelículas de dos microalgas bentónicas (Navicula incerta y Navicula sp.) en tres diferentes sustratos (malla plástica, tela y madera), bajo condiciones controladas de temperatura y luz. Los sustratos fueron arreglados a manera de cortinas suspendidas de un tubo de PVC dentro de acuarios de plástico (45 L de capacidad) con agua marina enriquecida con el medio F/2. El experimento se llevó hasta que la fase de crecimiento exponencial de la microalga fue alcanzada. Posteriormente la biomasa incorporada fue calculada gravimétricamente, y su composición bioquímica fue determinada por métodos estándar. La mayor cantidad de materia seca se observó para N. incerta en el sustrato de tela y la menor se encontró en el de madera. El mayor número de células asociadas a la biopelícula fue registrado para Navicula sp. en malla plástica (1.24 x 109 cel/m2), mientras que el menor se encontró para Navicula sp. en madera (1.43 x 108 cels/m2). Diferencias significativas en cuanto a materia orgánica se encontraron entre los sustratos y las especies, con valores más altos para N. incerta en tela (3.22 g/m2) y más bajos para Navicula sp. en madera (0.02 ± 0.05 g/m2). Los mejores perfiles bioquímicos para las biopelículas correspondieron a las formadas por N. incerta sobre malla plástica y Navicula sp. sobre tela. La red de plástico se consideró el mejor sustrato debido a la estabilidad de la biopelícula y la facilidad para cosechar la biomasa.

11.
Rev. biol. trop ; Rev. biol. trop;62(3): 969-976, jul.-sep. 2014. tab
Artigo em Inglês | LILACS | ID: lil-753667

RESUMO

Mollusks are some of the most important, abundant and diverse organisms inhabiting not only aquatic ecosystems, but also terrestrial environments. Recently, they have been used for bioremediation of aquaculture effluents; nevertheless, for that purpose it is necessary to analyze the capacity of a particular species. In this context, an experimental investigation was developed to evaluate the performance of two bivalves C. gnidia and D. ponderosa, collected from areas with or without shrimp aquaculture effluents. For this, the filtration capacity (as clearance rate) as well as the oxygen consumption and ammonia excretion rates were measured following standard methods. The clearance rate was significantly higher for D. ponderosa from impacted areas, when com- pared to C. gnidia, from both areas. Contrarily, the oxygen consumption was greater for C. gnidia from impacted areas compared to D. ponderosa from both areas. The same tendency was observed for the ammonia excretion with the highest rates observed for C. gnidia from impacted areas, whereas no differences were observed among D. ponderosa from both areas. The results suggest that both species developed different strategies to thrive and survive under the impacted conditions; D. ponderosa improved its filtration efficiency, while C. gnidia modified its oxygen consumption and ammonia excretion. We concluded that both species, and particularly D. ponderosa, can be used for bioremediation purposes.


Los moluscos son algunos de los organismos más importantes, abundantes y diversos que habitan no solo ecosistemas acuáticos sino también terrestres. Recientemente ellos han sido utilizados para la biorremediación de efluentes acuícolas; para este propósito, es necesario conocer la capacidad de especies particulares que funcionan como biorremediadores. En este contexto, se evaluó la eficiencia de filtración (medida como tasa de clarificación), así como las tasas de consumo de oxígeno y excreción amoniacal en los bivalvos D. pon- derosa y C. gnidia recolectados en áreas impactadas y no impactadas por efluentes de granjas camaroneras. La tasa de clarificación fue mayor para D. ponderosa procedente de áreas impactadas, comparada con la de C. fluctifraga en las dos áreas de recolecta. Contrariamente, la tasa de consumo de oxígeno fue superior en C. gnidia en las áreas impactadas al compararla con organismos de áreas no impactadas y con D. ponderosa de las dos áreas de recolecta. La tasa de excreción amoniacal siguió una tendencia similar con valores más altos para C. gnidia en áreas impactadas, mientras que no se observaron diferencias para D. ponderosa entre las áreas de recolecta. Los resultados sugieren que ambas especies desarrollan diferentes estrategias para adaptarse y sobrevivir bajo condiciones de impacto; D. ponderosa mejora su eficiencia de filtración y C. gnidia modifica su consumo de oxígeno y excreción amoniacal. Se concluye que ambas especies, pero sobre todo D. ponderosa pueden ser utilizadas con propósitos de biorremediación.


Assuntos
Animais , Compostos de Amônio/metabolismo , Aquicultura/métodos , Bivalves/fisiologia , Consumo de Oxigênio/fisiologia , Penaeidae/crescimento & desenvolvimento , Biodegradação Ambiental , Bivalves/classificação , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa