Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Adv Exp Med Biol ; 1422: 279-304, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36988885

RESUMO

Chloride fluxes through homo-dimeric calcium-activated channels TMEM16A and TMEM16B are critical to blood pressure, gastrointestinal motility, hormone, fluid and electrolyte secretion, pain sensation, sensory transduction, and neuronal and muscle excitability. Their gating depends on the voltage-dependent binding of two intracellular calcium ions to a high-affinity site formed by acidic residues from α-helices 6-8 in each monomer. Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), a low-abundant lipid of the inner leaflet, supports TMEM16A function; it allows TMEM16A to evade the down-regulation induced by calcium, poly-L-lysine, or PI(4,5)P2 5-phosphatase. In stark contrast, adding or removing PI(4,5)P2 diminishes or increases TMEM16B function, respectively. PI(4,5)P2-binding sites on TMEM16A, and presumably on TMEM16B, are on the cytosolic side of α-helices 3-5, opposite the calcium-binding sites. This modular structure suggested that PI(4,5)P2 and calcium cooperate to maintain the conductive state in TMEM16A. Cholesterol, the second-largest constituent of the plasma membrane, also regulates TMEM16A though the mechanism, functional outcomes, binding site(s), and effects on TMEM16A and TMEM16B remain unknown.


Assuntos
Canais de Cloreto , Fosfatidilinositóis , Humanos , Canais de Cloreto/genética , Canais de Cloreto/química , Canais de Cloreto/metabolismo , Anoctamina-1/metabolismo , Cálcio/metabolismo , Colesterol , Canais de Cálcio , Células HEK293
2.
Gastroenterology ; 161(1): 301-317.e16, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33819485

RESUMO

BACKGROUND & AIMS: Limited understanding of pruritus mechanisms in cholestatic liver diseases hinders development of antipruritic treatments. Previous studies implicated lysophosphatidic acid (LPA) as a potential mediator of cholestatic pruritus. METHODS: Pruritogenicity of lysophosphatidylcholine (LPC), LPA's precursor, was examined in naïve mice, cholestatic mice, and nonhuman primates. LPC's pruritogenicity involving keratinocyte TRPV4 was studied using genetic and pharmacologic approaches, cultured keratinocytes, ion channel physiology, and structural computational modeling. Activation of pruriceptor sensory neurons by microRNA-146a (miR-146a), secreted from keratinocytes, was identified by in vitro and ex vivo Ca2+ imaging assays. Sera from patients with primary biliary cholangitis were used for measuring the levels of LPC and miR-146a. RESULTS: LPC was robustly pruritic in mice. TRPV4 in skin keratinocytes was essential for LPC-induced itch and itch in mice with cholestasis. Three-dimensional structural modeling, site-directed mutagenesis, and channel function analysis suggested a TRPV4 C-terminal motif for LPC binding and channel activation. In keratinocytes, TRPV4 activation by LPC induced extracellular release of miR-146a, which activated TRPV1+ sensory neurons to cause itch. LPC and miR-146a levels were both elevated in sera of patients with primary biliary cholangitis with itch and correlated with itch intensity. Moreover, LPC and miR-146a were also increased in sera of cholestatic mice and elicited itch in nonhuman primates. CONCLUSIONS: We identified LPC as a novel cholestatic pruritogen that induces itch through epithelia-sensory neuron cross talk, whereby it directly activates skin keratinocyte TRPV4, which rapidly releases miR-146a to activate skin-innervating TRPV1+ pruriceptor sensory neurons. Our findings support the new concept of the skin, as a sensory organ, playing a critical role in cholestatic itch, beyond liver, peripheral sensory neurons, and central neural pathways supporting pruriception.


Assuntos
Colestase/complicações , Queratinócitos/metabolismo , Lisofosfatidilcolinas , Prurido/metabolismo , Células Receptoras Sensoriais/metabolismo , Pele/inervação , Canais de Cátion TRPV/metabolismo , Adulto , Idoso , Animais , Comportamento Animal , Células Cultivadas , Colestase/genética , Colestase/metabolismo , Colestase/fisiopatologia , Modelos Animais de Doenças , Feminino , Humanos , Macaca mulatta , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Prurido/induzido quimicamente , Prurido/genética , Prurido/fisiopatologia , Transdução de Sinais , Canais de Cátion TRPV/genética
3.
Cell Calcium ; 121: 102891, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38772195

RESUMO

The TMEM16A channel, a member of the TMEM16 protein family comprising chloride (Cl-) channels and lipid scramblases, is activated by the free intracellular Ca2+ increments produced by inositol 1,4,5-trisphosphate (IP3)-induced Ca2+ release after GqPCRs or Ca2+ entry through cationic channels. It is a ubiquitous transmembrane protein that participates in multiple physiological functions essential to mammals' lives. TMEM16A structure contains two identical 10-segment monomers joined at their transmembrane segment 10. Each monomer harbours one independent hourglass-shaped pore gated by Ca2+ ligation to an orthosteric site adjacent to the pore and controlled by two gates. The orthosteric site is created by assembling negatively charged glutamate side chains near the pore´s cytosolic end. When empty, this site generates an electrostatic barrier that controls channel rectification. In addition, an isoleucine-triad forms a hydrophobic gate at the boundary of the cytosolic vestibule and the inner side of the neck. When the cytosolic Ca2+ rises, one or two Ca2+ ions bind to the orthosteric site in a voltage (V)-dependent manner, thus neutralising the electrostatic barrier and triggering an allosteric gating mechanism propagating via transmembrane segment 6 to the hydrophobic gate. These coordinated events lead to pore opening, allowing the Cl- flux to ensure the physiological response. The Ca2+-dependent function of TMEM16A is highly regulated. Anions with higher permeability than Cl- facilitate V dependence by increasing the Ca2+ sensitivity, intracellular protons can replace Ca2+ and induce channel opening, and phosphatidylinositol 4,5-bisphosphate bound to four cytosolic sites likely maintains Ca2+ sensitivity. Additional regulation is afforded by cytosolic proteins, most likely by phosphorylation and protein-protein interaction mechanisms.


Assuntos
Anoctamina-1 , Cálcio , Humanos , Animais , Anoctamina-1/metabolismo , Cálcio/metabolismo , Canais de Cloreto/metabolismo , Ativação do Canal Iônico
4.
J Gen Physiol ; 154(8)2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35687042

RESUMO

Numerous essential physiological processes depend on the TMEM16A-mediated Ca2+-activated chloride fluxes. Extensive structure-function studies have helped to elucidate the Ca2+ gating mechanism of TMEM16A, revealing a Ca2+-sensing element close to the anion pore that alters conduction. However, substrate selection and the substrate-gating relationship in TMEM16A remain less explored. Here, we study the gating-permeant anion relationship on mouse TMEM16A expressed in HEK 293 cells using electrophysiological recordings coupled with site-directed mutagenesis. We show that the apparent Ca2+ sensitivity of TMEM16A increased with highly permeant anions and SCN- mole fractions, likely by stabilizing bound Ca2+. Conversely, mutations at crucial gating elements, including the Ca2+-binding site 1, the transmembrane helix 6 (TM6), and the hydrophobic gate, impaired the anion permeability and selectivity of TMEM16A. Finally, we found that, unlike anion-selective wild-type channels, the voltage dependence of unselective TMEM16A mutant channels was less sensitive to SCN-. Therefore, our work identifies structural determinants of selectivity at the Ca2+ site, TM6, and hydrophobic gate and reveals a reciprocal regulation of gating and selectivity. We suggest that this regulation is essential to set ionic selectivity and the Ca2+ and voltage sensitivities in TMEM16A.


Assuntos
Cálcio , Canais de Cloreto , Animais , Ânions/metabolismo , Anoctamina-1/genética , Cálcio/metabolismo , Canais de Cloreto/química , Canais de Cloreto/genética , Células HEK293 , Humanos , Ativação do Canal Iônico , Camundongos , Proteínas de Neoplasias/metabolismo
5.
Sci Rep ; 11(1): 13127, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34162897

RESUMO

The widely expressed two-pore homodimeric inward rectifier CLC-2 chloride channel regulates transepithelial chloride transport, extracellular chloride homeostasis, and neuronal excitability. Each pore is independently gated at hyperpolarized voltages by a conserved pore glutamate. Presumably, exiting chloride ions push glutamate outwardly while external protonation stabilizes it. To understand the mechanism of mouse CLC-2 opening we used homology modelling-guided structure-function analysis. Structural modelling suggests that glutamate E213 interacts with tyrosine Y561 to close a pore. Accordingly, Y561A and E213D mutants are activated at less hyperpolarized voltages, re-opened at depolarized voltages, and fast and common gating components are reduced. The double mutant cycle analysis showed that E213 and Y561 are energetically coupled to alter CLC-2 gating. In agreement, the anomalous mole fraction behaviour of the voltage dependence, measured by the voltage to induce half-open probability, was strongly altered in these mutants. Finally, cytosolic acidification or high extracellular chloride concentration, conditions that have little or no effect on WT CLC-2, induced reopening of Y561 mutants at positive voltages presumably by the inward opening of E213. We concluded that the CLC-2 gate is formed by Y561-E213 and that outward permeant anions open the gate by electrostatic and steric interactions.


Assuntos
Canais de Cloreto/química , Ativação do Canal Iônico , Sequência de Aminoácidos , Animais , Canais de Cloro CLC-2 , Bovinos , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Cloretos/metabolismo , Humanos , Camundongos , Mutação , Estrutura Terciária de Proteína , Alinhamento de Sequência , Relação Estrutura-Atividade
6.
Sci Rep ; 10(1): 19895, 2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-33199843

RESUMO

The aim of this study was to evaluate the craniofacial cephalometric characteristics of individuals with Down syndrome (DS), comparing them with healthy subjects. An electronic search was made in Pubmed, Embase, Lilacs, Scopus, Medline and Web of Science without imposing limitations on publication date or language. Studies were selecting following the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) statement. The PECO acronym was applied as follows: P (population), individuals with DS; E, (exposition) diagnosis of DS; C (comparison), individuals without DS; O (outcomes) craniofacial characteristics based on cephalometric measurements. Independent reviewers performed data extraction and assessed the methodological quality of the articles using the Newcastle-Ottawa Quality-Assessment-scale. Seven case-control studies were included in meta-analysis. Given the variability of the cephalometric measurements used, only those that had been reported in at least three or more works could be included. Anterior cranial base length (SN), posterior cranial base length (SBa), total cranial base length (BaN), effective length of the maxilla (CoA), sagittal relationship between subspinale and supramentale (ANB), anterior facial height (NMe), and posterior facial height (SGo) values were significantly lower in the DS population than among control subjects. No significant differences were found in sagittal position of subspinale relative to cranial base (SNA) and sagittal position of supramentale relative to cranial base (SNB). Summarizing, individuals with DS present a shorter and flatter cranial base than the general population, an upper jaw of reduced sagittal dimension, as well as a tendency toward prognatic profile, with the medium third of the face flattened and a reduced anterior and posterior facial heights.


Assuntos
Síndrome de Down/fisiopatologia , Face/patologia , Base do Crânio/patologia , Humanos , Prognóstico
7.
Channels (Austin) ; 13(1): 207-226, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31184289

RESUMO

Ion channels display conformational changes in response to binding of their agonists and antagonists. The study of the relationships between the structure and the function of these proteins has witnessed considerable advances in the last two decades using a combination of techniques, which include electrophysiology, optical approaches (i.e. patch clamp fluorometry, incorporation of non-canonic amino acids, etc.), molecular biology (mutations in different regions of ion channels to determine their role in function) and those that have permitted the resolution of their structures in detail (X-ray crystallography and cryo-electron microscopy). The possibility of making correlations among structural components and functional traits in ion channels has allowed for more refined conclusions on how these proteins work at the molecular level. With the cloning and description of the family of Transient Receptor Potential (TRP) channels, our understanding of several sensory-related processes has also greatly moved forward. The response of these proteins to several agonists, their regulation by signaling pathways as well as by protein-protein and lipid-protein interactions and, in some cases, their biophysical characteristics have been studied thoroughly and, recently, with the resolution of their structures, the field has experienced a new boom. This review article focuses on the conformational changes in the pores, concentrating on some members of the TRP family of ion channels (TRPV and TRPA subfamilies) that result in changes in their single-channel conductances, a phenomenon that may lead to fine-tuning the electrical response to a given agonist in a cell.


Assuntos
Canais de Potencial de Receptor Transitório/química , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Humanos , Família Multigênica , Conformação Proteica , Transdução de Sinais , Canais de Potencial de Receptor Transitório/genética
8.
Nat Commun ; 7: 13092, 2016 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-27721373

RESUMO

The transient receptor potential vanilloid 1 (TRPV1) ion channel is mainly found in primary nociceptive afferents whose activity has been linked to pathophysiological conditions including pain, itch and inflammation. Consequently, it is important to identify naturally occurring antagonists of this channel. Here we show that a naturally occurring monounsaturated fatty acid, oleic acid, inhibits TRPV1 activity, and also pain and itch responses in mice by interacting with the vanilloid (capsaicin)-binding pocket and promoting the stabilization of a closed state conformation. Moreover, we report an itch-inducing molecule, cyclic phosphatidic acid, that activates TRPV1 and whose pruritic activity, as well as that of histamine, occurs through the activation of this ion channel. These findings provide insights into the molecular basis of oleic acid inhibition of TRPV1 and also into a way of reducing the pathophysiological effects resulting from its activation.


Assuntos
Ácido Oleico/uso terapêutico , Dor/tratamento farmacológico , Prurido/tratamento farmacológico , Canais de Cátion TRPV/antagonistas & inibidores , Sequência de Aminoácidos , Animais , Sítios de Ligação , Capsaicina/farmacologia , Células HEK293 , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Ácido Oleico/farmacologia , Dor/patologia , Prurido/patologia , Ratos , Canais de Cátion TRPV/química , Canais de Cátion TRPV/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa