Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Int J Mol Sci ; 24(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36675164

RESUMO

In addition to the classic functions of proteins, such as acting as a biocatalyst or binding partner, the conformational states of proteins and their remodeling upon stimulation need to be considered. A prominent example of a protein that undergoes comprehensive conformational remodeling is transglutaminase 2 (TGase 2), the distinct conformational states of which are closely related to particular functions. Its involvement in various pathophysiological processes, including fibrosis and cancer, motivates the development of theranostic agents, particularly based on inhibitors that are directed toward the transamidase activity. In this context, the ability of such inhibitors to control the conformational dynamics of TGase 2 emerges as an important parameter, and methods to assess this property are in great demand. Herein, we describe the application of the switchSENSE® principle to detect conformational changes caused by three irreversibly binding Nε-acryloyllysine piperazides, which are suitable radiotracer candidates of TGase 2. The switchSENSE® technique is based on DNA levers actuated by alternating electric fields. These levers are immobilized on gold electrodes with one end, and at the other end of the lever, the TGase 2 is covalently bound. A novel computational method is introduced for describing the resulting lever motion to quantify the extent of stimulated conformational TGase 2 changes. Moreover, as a complementary biophysical method, native polyacrylamide gel electrophoresis was performed under similar conditions to validate the results. Both methods prove the occurrence of an irreversible shift in the conformational equilibrium of TGase 2, caused by the binding of the three studied Nε-acryloyllysine piperazides.


Assuntos
Conformação Proteica , Proteína 2 Glutamina gama-Glutamiltransferase , Conformação Molecular , Proteína 2 Glutamina gama-Glutamiltransferase/química , Transglutaminases/metabolismo
2.
Anal Chem ; 94(41): 14410-14418, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36206384

RESUMO

Gα proteins as part of heterotrimeric G proteins are molecular switches essential for G protein-coupled receptor- mediated intracellular signaling. The role of the Gα subunits has been examined for decades with various guanine nucleotides to elucidate the activation mechanism and Gα protein-dependent signal transduction. Several approaches describe fluorescent ligands mimicking the GTP function, yet lack the efficient estimation of the proteins' GTP binding activity and the fraction of active protein. Herein, we report the development of a reliable fluorescence anisotropy-based method to determine the affinity of ligands at the GTP-binding site and to quantify the fraction of active Gαi1 protein. An advanced bacterial expression protocol was applied to produce active human Gαi1 protein, whose GTP binding capability was determined with novel fluorescently labeled guanine nucleotides acting as high-affinity Gαi1 binders compared to the commonly used BODIPY FL GTPγS. This study thus contributes a new method for future investigations of the characterization of Gαi and other Gα protein subunits, exploring their corresponding signal transduction systems and potential for biomedical applications.


Assuntos
Nucleotídeos de Guanina , Proteínas Heterotriméricas de Ligação ao GTP , Polarização de Fluorescência , Nucleotídeos de Guanina/metabolismo , Guanosina Trifosfato/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Humanos , Ligantes , Ligação Proteica , Subunidades Proteicas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
3.
Int J Mol Sci ; 23(9)2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35562866

RESUMO

Transglutaminase 2 (TGase 2) is a multifunctional protein which is involved in various physiological and pathophysiological processes. The latter also include its participation in the development and progression of malignant neoplasms, which are often accompanied by increased protein synthesis. In addition to the elucidation of the molecular functions of TGase 2 in tumor cells, knowledge of its concentration that is available for targeting by theranostic agents is a valuable information. Herein, we describe the application of a recently developed fluorescence anisotropy (FA)-based assay for the quantitative expression profiling of TGase 2 by means of transamidase-active enzyme in cell lysates. This assay is based on the incorporation of rhodamine B-isonipecotyl-cadaverine (R-I-Cad) into N,N-dimethylated casein (DMC), which results in an increase in the FA signal over time. It was shown that this reaction is not only catalyzed by TGase 2 but also by TGases 1, 3, and 6 and factor XIIIa using recombinant proteins. Therefore, control measurements in the presence of a selective irreversible TGase 2 inhibitor were mandatory to ascertain the specific contribution of TGase 2 to the overall FA rate. To validate the assay regarding the quality of quantification, spike/recovery and linearity of dilution experiments were performed. A total of 25 cancer and 5 noncancer cell lines were characterized with this assay method in terms of their activatable TGase 2 concentration (fmol/µg protein lysate) and the results were compared to protein synthesis data obtained by Western blotting. Moreover, complementary protein quantification methods using a biotinylated irreversible TGase 2 inhibitor as an activity-based probe and a commercially available ELISA were applied to selected cell lines to further validate the results obtained by the FA-based assay. Overall, the present study demonstrates that the FA-based assay using the substrate pair R-I-Cad and DMC represents a facile, homogenous and continuous method for quantifying TGase 2 activity in cell lysates.


Assuntos
Proteína 2 Glutamina gama-Glutamiltransferase , Transglutaminases , Bioensaio , Cadaverina/farmacologia , Caseínas , Polarização de Fluorescência , Transglutaminases/metabolismo
4.
Molecules ; 26(22)2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34834103

RESUMO

Polyamines are highly attractive vectors for tumor targeting, particularly with regards to the development of radiolabeled probes for imaging by positron emission (PET) and single-photon emission computed tomography (SPECT). However, the synthesis of selectively functionalized derivatives remains challenging due to the presence of multiple amino groups of similar reactivity. In this work, we established a synthetic methodology for the selective mono-fluorobenz(o)ylation of various biogenic diamines and polyamines as lead compounds for the perspective development of substrate-based radiotracers for targeting polyamine-specific membrane transporters and enzymes such as transglutaminases. For this purpose, the polyamine scaffold was constructed by solid-phase synthesis of the corresponding oxopolyamines and subsequent reduction with BH3/THF. Primary and secondary amino groups were selectively protected using Dde and Boc as protecting groups, respectively, in orientation to previously reported procedures, which enabled the selective introduction of the reporter groups. For example, N1-FBz-spermidine, N4-FBz-spermidine, N8-FBz-spermidine, and N1-FBz-spermine and N4-FBz-spermine (FBz = 4-fluorobenzoyl) were obtained in good yields by this approach. The advantages and disadvantages of this synthetic approach are discussed in detail and its suitability for radiolabeling was demonstrated for the solid-phase synthesis of N1-[18F]FBz-cadaverine.


Assuntos
Radioisótopos de Flúor/química , Poliaminas , Compostos Radiofarmacêuticos , Técnicas de Síntese em Fase Sólida , Animais , Humanos , Poliaminas/síntese química , Poliaminas/química , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/química
5.
Anal Biochem ; 595: 113612, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32045569

RESUMO

A reliable solution-phase synthesis of the water-soluble dipeptidic fluorogenic transglutaminase substrate Z-Glu(HMC)-Gly-OH is presented. The route started from Z-Glu-OH, which was converted into the corresponding cyclic anhydride. This building block was transformed into the regioisomeric α- and γ-dipeptides. The key step was the esterification of Z-Glu-Gly-OtBu with 4-methylumbelliferone. The final substrate compound was obtained in an acceptable yield and excellent purity without the need of purification by RP-HPLC. The advantage of this acyl donor substrate for the kinetic characterisation of inhibitors and amine-type acyl acceptor substrates is demonstrated by evaluating commercially available or literature-known irreversible inhibitors and the biogenic amines serotonin, histamine and dopamine, respectively.


Assuntos
Aminas/antagonistas & inibidores , Dipeptídeos/farmacologia , Corantes Fluorescentes/farmacologia , Proteínas de Ligação ao GTP/antagonistas & inibidores , Transglutaminases/antagonistas & inibidores , Aminas/metabolismo , Dipeptídeos/síntese química , Dipeptídeos/química , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/química , Proteínas de Ligação ao GTP/metabolismo , Humanos , Estrutura Molecular , Proteína 2 Glutamina gama-Glutamiltransferase , Soluções , Especificidade por Substrato , Transglutaminases/metabolismo
6.
Molecules ; 25(21)2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33153234

RESUMO

In a previous study, EphB4 was demonstrated to be a positive regulator of A375-melanoma growth but a negative regulator of tumor vascularization and perfusion. To distinguish between EphB4 forward and ephrinB2 reverse signaling, we used the commercially available EphB4 kinase inhibitor NVP-BHG712 (NVP), which was later identified as its regioisomer NVPiso. Since there have been reported significant differences between the inhibition profiles of NVP and NVPiso, we compared the influence of NVP and NVPiso on tumor characteristics under the same experimental conditions. Despite the different inhibitory profiles of NVP and NVPiso, the comparative study conducted here showed the same EphB4-induced effects in vivo as in the previous investigation. This confirmed the conclusion that EphB4-ephrinB2 reverse signaling is responsible for increased tumor growth as well as decreased tumor vascularization and perfusion. These results are further substantiated by microarrays showing differences between mock-transfected and EphB4-transfected (A375-EphB4) cells with respect to at least 9 angiogenesis-related proteins. Decreased expression of vascular endothelial growth factor (VEGF), angiotensin 1 (Ang-1), and protein kinase B (Akt/PKB), together with the increased expression of tissue inhibitor of metalloproteinase-1 (TIMP-1) and transforming growth factor beta-2 (TGF-ß2), is consistent with the impaired vascularization of A375-EphB4 xenografts. Functional overexpression of EphB4 in A375-EphB4 cells was confirmed by activation of a variety of signaling pathways, including the Janus kinase/signal transducers and activators of transcription (JAK/STAT), rat sarcoma virus/rapidly accelerated fibrosarcoma/mitogen activated protein kinase kinase (Ras/Raf/MEK), and nuclear factor kappa-B (NFkB) pathways.


Assuntos
Proliferação de Células/efeitos dos fármacos , Melanoma Experimental , Proteínas de Neoplasias , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Receptor EphB4/metabolismo , Animais , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/enzimologia , Melanoma Experimental/patologia , Camundongos , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Amino Acids ; 51(2): 219-244, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30264172

RESUMO

The cell surface receptor claudin-4 (Cld-4) is upregulated in various tumours and represents an important emerging target for both diagnosis and treatment of solid tumours of epithelial origin. The C-terminal fragment of the Clostridium perfringens enterotoxin cCPE290-319 appears as a suitable ligand for targeting Cld-4. The synthesis of this 30mer peptide was attempted via several approaches, which has revealed sequential SPPS using three pseudoproline dipeptide building blocks to be the most efficient one. Labelling with fluorine-18 was achieved on solid phase using N-succinimidyl 4-[18F]fluorobenzoate ([18F]SFB) and 4-[18F]fluorobenzoyl chloride as 18F-acylating agents, which was the most advantageous when [18F]SFB was reacted with the resin-bound 30mer containing an N-terminal 6-aminohexanoic spacer. Binding to Cld-4 was demonstrated via surface plasmon resonance using a protein construct containing both extracellular loops of Cld-4. In addition, cell binding experiments were performed for 18F-labelled cCPE290-319 with the Cld-4 expressing tumour cell lines HT-29 and A431 that were complemented by fluorescence microscopy studies using the corresponding fluorescein isothiocyanate-conjugated peptide. The 30mer peptide proved to be sufficiently stable in blood plasma. Studying the in vivo behaviour of 18F-labelled cCPE290-319 in healthy mice and rats by dynamic PET imaging and radiometabolite analyses has revealed that the peptide is subject to substantial liver uptake and rapid metabolic degradation in vivo, which limits its suitability as imaging probe for tumour-associated Cld-4.


Assuntos
Claudina-4/antagonistas & inibidores , Enterotoxinas/síntese química , Enterotoxinas/farmacocinética , Animais , Claudina-4/química , Claudina-4/metabolismo , Enterotoxinas/química , Enterotoxinas/farmacologia , Radioisótopos de Flúor/química , Células HT29 , Humanos , Marcação por Isótopo , Ligantes , Masculino , Camundongos , Camundongos Nus , Imagem Molecular , Mimetismo Molecular/fisiologia , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Tomografia por Emissão de Pósitrons , Ratos , Ratos Wistar , Técnicas de Síntese em Fase Sólida
8.
Bioorg Med Chem ; 27(1): 1-15, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30473362

RESUMO

The potential of papain-like cysteine proteases, such as cathepsin B, as drug discovery targets for systemic human diseases has prevailed over the past years. The development of potent and selective low-molecular cathepsin B inhibitors relies on the detailed expertise on preferred amino acid and inhibitor residues interacting with the corresponding specificity pockets of cathepsin B. Such knowledge might be obtained by mapping the active site of the protease with combinatorial libraries of peptidic substrates and peptidomimetic inhibitors. This review, for the first time, summarizes a wide spectrum of active site mapping approaches. It considers relevant X-ray crystallographic data and discloses propensities towards favorable protein-ligand interactions in case of the therapeutically relevant protease cathepsin B.


Assuntos
Catepsina B/química , Inibidores de Cisteína Proteinase/química , Peptídeos/química , Animais , Domínio Catalítico , Cristalografia por Raios X , Humanos , Cinética , Ligantes , Especificidade por Substrato
9.
J Labelled Comp Radiopharm ; 62(8): 448-459, 2019 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-30912586

RESUMO

An O-methyltyrosine-containing azadipeptide nitrile was synthesised and investigated for its inhibitory activity towards cathepsins L, S, K, and B. Labelling with carbon-11 was accomplished by reaction of the corresponding phenolic precursor with [11 C]methyl iodide starting from cyclotron-produced [11 C]methane. Radiopharmacological evaluation of the resulting radiotracer in a mouse xenograft model derived from a mammary tumour cell line by small animal PET imaging indicates tumour targeting with complex pharmacokinetics. Radiotracer uptake in the tumour region was considerably lower under treatment with the nonradioactive reference compound and the epoxide-based irreversible cysteine cathepsin inhibitor E64. The in vivo behaviour observed for this radiotracer largely confirms that of the corresponding 18 F-fluoroethylated analogue and suggests the limited suitability of azadipeptide nitriles for the imaging of tumour-associated cysteine cathepsins despite target-mediated uptake is evidenced.


Assuntos
Radioisótopos de Carbono , Catepsinas/metabolismo , Cisteína/metabolismo , Dipeptídeos/química , Nitrilas/química , Nitrilas/síntese química , Tomografia por Emissão de Pósitrons/métodos , Animais , Transporte Biológico , Linhagem Celular Tumoral , Técnicas de Química Sintética , Feminino , Humanos , Camundongos , Camundongos Nus , Nitrilas/metabolismo , Traçadores Radioativos
10.
Amino Acids ; 49(3): 567-583, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-26886924

RESUMO

Tissue transglutaminase (TGase 2) is the most abundantly expressed enzyme of the transglutaminase family and involved in a large variety of pathological processes, such as neurodegenerative diseases, disorders related to autoimmunity and inflammation as well as tumor growth, progression and metastasis. As a result, TGase 2 represents an attractive target for drug discovery and development, which requires assays that allow for the characterization of modulating agents and are appropriate for high-throughput screening. Herein, we report a fluorescence anisotropy-based approach for the determination of TGase 2's transamidase activity, following the time-dependent increase in fluorescence anisotropy due to the enzyme-catalyzed incorporation of fluorescein- and rhodamine B-conjugated cadaverines 1-3 (acyl acceptor substrates) into N,N-dimethylated casein (acyl donor substrate). These cadaverine derivatives 1-3 were obtained by solid-phase synthesis. To allow efficient conjugation of the rhodamine B moiety, different linkers providing secondary amine functions, such as sarcosyl and isonipecotyl, were introduced between the cadaverine and xanthenyl entities in compounds 2 and 3, respectively, with acyl acceptor 3 showing the most optimal substrate properties of the compounds investigated. The assay was validated for the search of both irreversible and reversible TGase 2 inhibitors using the inactivators iodoacetamide and a recently published L-lysine-derived acrylamide and the allosteric binder GTP, respectively. In addition, the fluorescence anisotropy-based method was proven to be suitable for high-throughput screening (Z' factor of 0.86) and represents a non-radioactive and highly sensitive assay for determining the active TGase 2 concentration.


Assuntos
Cadaverina/análogos & derivados , Inibidores Enzimáticos/química , Corantes Fluorescentes/química , Proteínas de Ligação ao GTP/química , Ensaios de Triagem em Larga Escala , Proteínas Recombinantes/química , Transglutaminases/química , Animais , Cadaverina/síntese química , Caseínas/química , Domínio Catalítico , Fluoresceína/síntese química , Polarização de Fluorescência/métodos , Corantes Fluorescentes/síntese química , Proteínas de Ligação ao GTP/antagonistas & inibidores , Guanosina Trifosfato/química , Cobaias , Humanos , Iodoacetamida/química , Cinética , Fígado/química , Fígado/enzimologia , Proteína 2 Glutamina gama-Glutamiltransferase , Rodaminas/química , Técnicas de Síntese em Fase Sólida , Transglutaminases/antagonistas & inibidores
11.
Chembiochem ; 17(13): 1263-81, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27124709

RESUMO

Small glutamate-containing peptides bearing coumarin derivatives as fluorescent leaving groups attached to the γ-carboxylic acid group of the Glu residue were synthesised and investigated with regard to their potential to act as substrates for transglutaminase 2 (TGase 2). Their synthesis was accomplished by an efficient solid-phase approach. The excellent water solubility of the compounds enabled their extensive kinetic characterisation in the context of TGase 2-catalysed hydrolysis and aminolysis. The influence of the coumarin skeleton's substitution pattern on the kinetic properties was studied. Derivatives containing 7-hydroxy-4-methylcoumarin (HMC) revealed properties superior to those of their 7-hydroxycoumarin counterparts; analogous amides are not accepted as substrates. Z-Glu(HMC)-Gly-OH, which exhibited the best substrate properties out of the investigated derivatives, was selected for representative kinetic characterisation of acyl acceptor substrates and irreversible inhibitors.


Assuntos
Cumarínicos/química , Corantes Fluorescentes/química , Proteínas de Ligação ao GTP/química , Oligopeptídeos/química , Transglutaminases/química , Aminas/química , Aminoacetonitrila/química , Animais , Antioxidantes/química , Biotina/análogos & derivados , Biotina/química , Cumarínicos/síntese química , Ditiotreitol/química , Ensaios Enzimáticos/métodos , Corantes Fluorescentes/síntese química , Glutamatos/síntese química , Glutamatos/química , Cobaias , Humanos , Iodoacetamida/química , Cinética , Lisina/análogos & derivados , Lisina/química , Oligopeptídeos/síntese química , Fosfinas/química , Piperazinas/química , Proteína 2 Glutamina gama-Glutamiltransferase
12.
Breast Cancer Res ; 17: 107, 2015 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-26265048

RESUMO

INTRODUCTION: Lysyl oxidase (LOX; ExPASy ENZYME entry: EC 1.4.3.13) and members of the LOX-like family, LOXL1-LOXL4, are copper-dependent enzymes that can modify proteins of the extracellular matrix. Expression of LOX is elevated in many human cancers, including breast cancer. LOX expression correlates with the level of tissue hypoxia, and it is known to play a critical role in breast cancer metastasis. The goal of the present study was to target LOX with (1) molecular probe fluorescent labeling to visualize LOX in vitro and (2) a radiolabeled peptide to target LOX in vivo in three different preclinical models of breast cancer. METHODS: Gene expression of all five members of the LOX family was analyzed at the transcript level via microarray analysis using tissue biopsy samples from 176 patients with breast cancer. An oligopeptide sequence (GGGDPKGGGGG) was selected as a substrate-based, LOX-targeting structure. The peptide was labeled with fluorescein isothiocyanate (FITC) for confocal microscopy experiments with the murine breast cancer cell line EMT-6. In vivo molecular imaging experiments were performed using a C-terminal amidated peptide, GGGDPKGGGGG, labeled with a short-lived positron emitter, fluorine-18 ((18)F), for positron emission tomography (PET) in three different breast cancer models: EMT6, MCF-7 and MDA-MB-231. The PET experiments were carried out in the presence or absence of ß-aminopropionitrile (BAPN), an irreversible inhibitor of LOX. RESULTS: Immunostaining experiments using a LOX-specific antibody on EMT-6 cells cultured under hypoxic conditions confirmed the elevation of LOX expression in these cells. An FITC-labeled oligopeptide, FITC-Ava-GGGDPKGGGGG-NH2, was found to be localized in different cellular compartments under these conditions. After injection of [(18)F]fluorobenzoate-GGGDPKGGGGG-NH2, radioactivity uptake was visible in all three breast cancer models in vivo. Tumor uptake was reduced by predosing the animals with 2 mg of BAPN 4 h or 24 h before injection of the radiotracer. CONCLUSIONS: The present data support further investigation into the development of LOX-binding radiolabeled peptides as molecular probes for molecular imaging of LOX expression in cancer.


Assuntos
Neoplasias da Mama/diagnóstico , Neoplasias da Mama/metabolismo , Imagem Molecular , Proteína-Lisina 6-Oxidase/metabolismo , Animais , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Expressão Gênica , Humanos , Hipóxia , Isoenzimas , Camundongos , Microscopia Confocal , Imagem Molecular/métodos , Tomografia por Emissão de Pósitrons , Proteína-Lisina 6-Oxidase/genética , RNA Mensageiro/genética
13.
Org Biomol Chem ; 13(6): 1878-96, 2015 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-25503999

RESUMO

The collagen telopeptides play an important role for lysyl oxidase-mediated crosslinking, a process which is deregulated during tumour progression. The DEKS motif which is located within the N-terminal telopeptide of the α1 chain of type I collagen has been suggested to adopt a ßI-turn conformation upon docking to its triple-helical receptor domain, which seems to be critical for lysyl oxidase-catalysed deamination and subsequent crosslinking by Schiff-base formation. Herein, the design and synthesis of cyclic peptides which constrain the DEKS sequence in a ß-turn conformation will be described. Lysine-side chain attachment to 2-chlorotrityl chloride-modified polystyrene resin followed by microwave-assisted solid-phase peptide synthesis and on-resin cyclisation allowed for an efficient access to head-to-tail cyclised DEKS-derived cyclic penta- and hexapeptides. An N(ε)-(4-fluorobenzoyl)lysine residue was included in the cyclopeptides to allow their potential radiolabelling with fluorine-18 for PET imaging of lysyl oxidase. Conformational analysis by (1)H NMR and chiroptical (electronic and vibrational CD) spectroscopy together with MD simulations demonstrated that the concomitant incorporation of a D-proline and an additional lysine for potential radiolabel attachment accounts for a reliable induction of the desired ßI-turn structure in the DEKS motif in both DMSO and water as solvents. The stabilised conformation of the cyclohexapeptide is further reflected by its resistance to trypsin-mediated degradation. In addition, the deaminated analogue containing allysine in place of lysine has been synthesised via the corresponding ε-hydroxynorleucine containing cyclohexapeptide. Both ε-hydroxynorleucine and allysine containing cyclic hexapeptides have been subjected to conformational analysis in the same manner as the lysine-based parent structure. Thus, both a conformationally restricted lysyl oxidase substrate and product have been synthetically accessed, which will enable their potential use for molecular imaging of these important enzymes.


Assuntos
Colágeno/química , Peptídeos/química , Peptídeos/síntese química , Sequência de Aminoácidos , Cromatografia em Camada Fina , Dicroísmo Circular , Modelos Moleculares , Conformação Molecular
14.
EJNMMI Radiopharm Chem ; 9(1): 1, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38165538

RESUMO

BACKGROUND: Transglutaminase 2 (TGase 2) is a multifunctional protein and has a prominent role in various (patho)physiological processes. In particular, its transamidase activity, which is rather latent under physiological conditions, gains importance in malignant cells. Thus, there is a great need of theranostic probes for targeting tumor-associated TGase 2, and targeted covalent inhibitors appear to be particularly attractive as vector molecules. Such an inhibitor, equipped with a radionuclide suitable for noninvasive imaging, would be supportive for answering the general question on the possibility for functional characterization of tumor-associated TGase 2. For this purpose, the recently developed 18F-labeled Nε-acryloyllysine piperazide [18F]7b, which is a potent and selective irreversible inhibitor of TGase 2, was subject to a detailed radiopharmacological characterization herein. RESULTS: An alternative radiosynthesis of [18F]7b is presented, which demands less than 300 µg of the respective trimethylammonio precursor per synthesis and provides [18F]7b in good radiochemical yields (17 ± 7%) and high (radio)chemical purities (≥ 99%). Ex vivo biodistribution studies in healthy mice at 5 and 60 min p.i. revealed no permanent enrichment of 18F-activity in tissues with the exception of the bone tissue. In vivo pretreatment with ketoconazole and in vitro murine liver microsome studies complemented by mass spectrometric analysis demonstrated that bone uptake originates from metabolically released [18F]fluoride. Further metabolic transformations of [18F]7b include mono-hydroxylation and glucuronidation. Based on blood sampling data and liver microsome experiments, pharmacokinetic parameters such as plasma and intrinsic clearance were derived, which substantiated the apparently rapid distribution of [18F]7b in and elimination from the organisms. A TGase 2-mediated uptake of [18F]7b in different tumor cell lines could not be proven. Moreover, evaluation of [18F]7b in melanoma tumor xenograft models based on A375-hS100A4 (TGase 2 +) and MeWo (TGase 2 -) cells by ex vivo biodistribution and PET imaging studies were not indicative for a specific targeting. CONCLUSION: [18F]7b is a valuable radiometric tool to study TGase 2 in vitro under various conditions. However, its suitability for targeting tumor-associated TGase 2 is strongly limited due its unfavorable pharmacokinetic properties as demonstrated in rodents. Consequently, from a radiochemical perspective [18F]7b requires appropriate structural modifications to overcome these limitations.

15.
Bioorg Med Chem Lett ; 23(24): 6528-43, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24432384

RESUMO

Tissue transglutaminase (transglutaminase 2) is a multifunctional enzyme with many interesting properties resulting in versatile roles in both physiology and pathophysiology. Herein, the particular involvement of the enzyme in human diseases will be outlined with special emphasis on its role in cancer and in tissue interactions with biomaterials. Despite recent progress in unraveling the different cellular functions of transglutaminase 2, several questions remain. Transglutaminase 2 features in both confirmed and some still ambiguous roles within pathological conditions, raising interest in developing inhibitors and imaging probes which target this enzyme. One important prerequisite for identifying and characterizing such molecular tools are reliable assay methods to measure the enzymatic activity. This digest Letter will provide clarification about the various assay methods described to date, accompanied by a discussion of recent progress in the development of inhibitors and imaging probes targeting transglutaminase 2.


Assuntos
Proteínas de Ligação ao GTP/antagonistas & inibidores , Transglutaminases/antagonistas & inibidores , Animais , Inibidores Enzimáticos/química , Inibidores Enzimáticos/uso terapêutico , Proteínas de Ligação ao GTP/metabolismo , Humanos , Cinética , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Peptídeos/química , Peptídeos/metabolismo , Proteína 2 Glutamina gama-Glutamiltransferase , Relação Estrutura-Atividade , Transglutaminases/metabolismo
16.
Beilstein J Org Chem ; 9: 1002-11, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23766817

RESUMO

3-[(18)F]Fluoropropanesulfonyl chloride, a recently proposed prosthetic agent for fluorine-18 labelling, was prepared in a two-step radiosynthesis via 3-[(18)F]fluoropropyl thiocyanate as an intermediate. Two benzenesulfonate-based radiolabelling precursors were prepared by various routes. Comparing the reactivities of 3-thiocyanatopropyl nosylate and the corresponding tosylate towards [(18)F]fluoride the former proved to be superior accounting for labelling yields of up to 85%. Conditions for a reliable transformation of 3-[(18)F]fluoropropyl thiocyanate to the corresponding sulfonyl chloride with the potential for automation have been identified. The reaction of 3-[(18)F]fluoropropanesulfonyl chloride with eight different aliphatic and aromatic amines was investigated and the identity of the resulting (18)F-labelled sulfonamides was confirmed chromatographically by comparison with their nonradioactive counterparts. Even for weakly nucleophilic amines such as 4-nitroaniline the desired radiolabelled sulfonamides were accessible in satisfactory yields owing to systematic variation of the reaction conditions. With respect to the application of the (18)F-fluoropropansulfonyl group to the labelling of compounds relevant as imaging agents for positron emission tomography (PET), the stability of N-(4-fluorophenyl)-3-fluoropropanesulfonamide against degradation catalysed by carboxylesterase was investigated and compared to that of the analogous fluoroacetamide.

17.
ACS Omega ; 8(26): 24003-24009, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37426243

RESUMO

The development of novel ligands for G-protein-coupled receptors (GPCRs) typically entails the characterization of their binding affinity, which is often performed with radioligands in a competition or saturation binding assay format. Since GPCRs are transmembrane proteins, receptor samples for binding assays are prepared from tissue sections, cell membranes, cell homogenates, or intact cells. As part of our investigations on modulating the pharmacokinetics of radiolabeled peptides for improved theranostic targeting of neuroendocrine tumors with a high abundance of the somatostatin receptor sub-type 2 (SST2), we characterized a series of 64Cu-labeled [Tyr3]octreotate (TATE) derivatives in vitro in saturation binding assays. Herein, we report on the SST2 binding parameters measured toward intact mouse pheochromocytoma cells and corresponding cell homogenates and discuss the observed differences taking the physiology of SST2 and GPCRs in general into account. Furthermore, we point out method-specific advantages and limitations.

18.
ChemMedChem ; 18(18): e202300331, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37565736

RESUMO

The understanding of the contribution of the tumour microenvironment to cancer progression and metastasis, in particular the interplay between tumour cells, fibroblasts and the extracellular matrix has grown tremendously over the last years. Lysyl oxidases are increasingly recognised as key players in this context, in addition to their function as drivers of fibrotic diseases. These insights have considerably stimulated drug discovery efforts towards lysyl oxidases as targets over the last decade. This review article summarises the biochemical and structural properties of theses enzymes. Their involvement in tumour progression and metastasis is highlighted from a biochemical point of view, taking into consideration both the extracellular and intracellular action of lysyl oxidases. More recently reported inhibitor compounds are discussed with an emphasis on their discovery, structure-activity relationships and the results of their biological characterisation. Molecular probes developed for imaging of lysyl oxidase activity are reviewed from the perspective of their detection principles, performance and biomedical applications.


Assuntos
Neoplasias , Proteína-Lisina 6-Oxidase , Humanos , Proteína-Lisina 6-Oxidase/uso terapêutico , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Fibrose , Fibroblastos , Diagnóstico por Imagem , Microambiente Tumoral
19.
J Med Chem ; 66(1): 516-537, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36595224

RESUMO

The applicability of radioligands for targeted endoradionuclide therapy is limited due to radiation-induced toxicity to healthy tissues, in particular to the kidneys as primary organs of elimination. The targeting of enzymes of the renal brush border membrane by cleavable linkers that permit the formation of fast eliminating radionuclide-carrying cleavage fragments gains increasing interest. Herein, we synthesized a small library of 64Cu-labeled cleavable linkers and quantified their substrate potentials toward neprilysin (NEP), a highly abundant peptidase at the renal brush border membrane. This allowed for the derivation of structure-activity relationships, and selected cleavable linkers were attached to the somatostatin receptor subtype 2 ligand [Tyr3]octreotate. Radiopharmacological characterization revealed that a substrate-based targeting of NEP in the kidneys with small peptides entails their premature cleavage in the blood circulation by soluble and endothelium-derived NEP. However, for a kidney-specific targeting of NEP, the additional targeting of albumin in the blood is highlighted.


Assuntos
Neprilisina , Compostos Radiofarmacêuticos , Rim , Peptídeos , Microvilosidades
20.
J Med Chem ; 66(6): 3818-3851, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36867428

RESUMO

The potential of designing irreversible alkyne-based inhibitors of cysteine cathepsins by isoelectronic replacement in reversibly acting potent peptide nitriles was explored. The synthesis of the dipeptide alkynes was developed with special emphasis on stereochemically homogeneous products obtained in the Gilbert-Seyferth homologation for C≡C bond formation. Twenty-three dipeptide alkynes and 12 analogous nitriles were synthesized and investigated for their inhibition of cathepsins B, L, S, and K. Numerous combinations of residues at positions P1 and P2 as well as terminal acyl groups allowed for the derivation of extensive structure-activity relationships, which were rationalized by computational covalent docking for selected examples. The determined inactivation constants of the alkynes at the target enzymes span a range of >3 orders of magnitude (3-10 133 M-1 s-1). Notably, the selectivity profiles of alkynes do not necessarily reflect those of the nitriles. Inhibitory activity at the cellular level was demonstrated for selected compounds.


Assuntos
Catepsinas , Dipeptídeos , Catepsinas/metabolismo , Dipeptídeos/química , Cisteína , Inibidores de Cisteína Proteinase/química , Catepsina B , Relação Estrutura-Atividade , Nitrilas/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa