Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 32(46): 46LT02, 2020 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-32717737

RESUMO

In the series R2PdSi3, Nd2PdSi3 is an anomalous compound in the sense that it exhibits ferromagnetic order unlike other members in this family. The magnetic ordering temperature is also unusually high compared to the expected value for a Nd-based system, assuming 4f localization. Here, we have studied the electronic structure of single crystalline Nd2PdSi3 employing high resolution photoemission spectroscopy and ab initio band structure calculations. Theoretical results obtained for the effective on-site Coulomb energy of 6 eV corroborate well with the experimental valence band spectra. While there is significant Pd 4d-Nd 4f hybridization, the states near the Fermi level are found to be dominated by hybridized Nd 4f-Si 3p states, which is possibly responsible for the ferromagnetism in Nd compound. Nd 3d core level spectrum exhibits multiple features manifesting strong final state effects due to electron correlation, charge transfer and collective excitations. These results serve as one of the rare demonstrations of hybridization of Nd 4f states with the conduction electrons possibly responsible for the exoticity of this compound.

2.
Biomaterials ; 24(28): 5115-20, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14568427

RESUMO

A group of Ti(60)Cu(14)Ni(12)Sn(4)M(10) (M=Nb, Ta, Mo) alloys was prepared using arc melting and copper mold casting. The as-prepared alloys have a composite microstructure containing a micrometer-sized dendritic beta-Ti(M) phase dispersed in a nanocrystalline matrix. These new alloys exhibit a low Young's modulus in the range of 59-103 GPa, and a high yield strength of 1037-1755 MPa, together with large plastic strains. The combination of high strength and low elastic modulus offers potential advantages in biomedical applications.


Assuntos
Ligas/química , Materiais Biocompatíveis/química , Teste de Materiais , Nanotecnologia/instrumentação , Nanotecnologia/métodos , Titânio/química , Ligas/síntese química , Materiais Biocompatíveis/síntese química , Tecnologia Biomédica/instrumentação , Tecnologia Biomédica/métodos , Elasticidade , Temperatura Alta , Manufaturas/análise , Conformação Molecular , Propriedades de Superfície
3.
Sci Rep ; 2: 890, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23189239

RESUMO

Magnetic materials are usually divided into two classes: those with localised magnetic moments, and those with itinerant charge carriers. We present a comprehensive experimental (spectroscopic ellipsomerty) and theoretical study to demonstrate that these two types of magnetism do not only coexist but complement each other in the Kondo-lattice metal, Tb(2)PdSi(3). In this material the itinerant charge carriers interact with large localised magnetic moments of Tb(4f) states, forming complex magnetic lattices at low temperatures, which we associate with self-organisation of magnetic clusters. The formation of magnetic clusters results in low-energy optical spectral weight shifts, which correspond to opening of the pseudogap in the conduction band of the itinerant charge carriers and development of the low- and high-spin intersite electronic transitions. This phenomenon, driven by self-trapping of electrons by magnetic fluctuations, could be common in correlated metals, including besides Kondo-lattice metals, Fe-based and cuprate superconductors.

4.
Phys Rev Lett ; 102(4): 046401, 2009 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-19257445

RESUMO

Measurements of the low-energy electronic structure in Gd2PdSi3 and Tb2PdSi3 by means of angle-resolved photoelectron spectroscopy reveal a Fermi surface consisting of an electron barrel at the Gamma point surrounded by spindle-shaped electron pockets originating from the same band. The calculated momentum-dependent RKKY coupling strength is peaked at the 1/2GammaK wave vector, which coincides with the propagation vector of the low-temperature in-plane magnetic order observed by neutron diffraction, thereby demonstrating the decisive role of the Fermi surface geometry in explaining the complex magnetic ground state of ternary rare earth silicides.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa