Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 19(14)2019 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-31337074

RESUMO

Localization is a key-enabling technology for many applications in underwater wireless sensor networks. Traditional approaches for received signal strength (RSS)-based localization often require uniform distribution for anchor nodes and suffer from poor estimates according to unpredictable and uncontrollable noise conditions. In this paper, we establish an RSS-based localization scheme to determine the location of an unknown normal sensor from a certain measurement set of potential anchor nodes. First, we present a practical path loss model for wireless communication in underwater acoustic environments, where anchor nodes are deployed in a random circumstance. For a given area of interest, the RSS data collection is performed dynamically, where the measurement noises and the correlation among them are taken into account. For a pair of transmitter and receiver, we approximate the geometry distance between them according to a linear regression model. Thus, we can obtain a quick access for the range information, while keeping the error, the communication head and the response time low. We also present a method to correct noises in the distance estimate. Simulation results demonstrate that our localization scheme achieves a better performance for certain scenario settings. The successful localization probability can be up to 90%, where the anchor rate is fixed at 10%.

2.
Sensors (Basel) ; 19(9)2019 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-31067832

RESUMO

Wireless sensor networks (WSNs) enable many applications such as intelligent control, prediction, tracking, and other communication network services, which are integrated into many technologies of the Internet-of-Things. The conventional localization frameworks may not function well in practical environments since they were designed either for two-dimensional space only, or have high computational costs, or are sensitive to measurement errors. In order to build an accurate and efficient localization scheme, we consider in this paper a hybrid received signal strength and angle-of-arrival localization in three-dimensional WSNs, where sensors are randomly deployed with the transmit power and the path loss exponent unknown. Moreover, in order to avoid the difficulty of solving the conventional maximum-likelihood estimator due to its non-convex and highly complex natures, we derive a weighted least squares estimate to estimate jointly the location of the unknown node and the two aforementioned channel components through some suitable approximations. Simulation results confirm the effectiveness of the proposed method.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa