Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Toxicol Pathol ; 51(5): 232-245, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37916535

RESUMO

Toxicology studies in nonhuman primates were conducted to evaluate selective, brain penetrant inhibitors of LRRK2. GNE 7915 was limited to 7-day administration in cynomolgus monkeys at 65 mg/kg/day or limited to 14 days in rhesus at 22.5 mg/kg b.i.d. due to physical signs. Compound 25 demonstrated acceptable tolerability at 50 and 225 mg/kg b.i.d. for 7 days in rhesus monkeys. MK-1468 was tolerated during 7-day administration at 100, 200 or 800 mg/kg/day or for 30-day administration at 30, 100, or 500 mg/kg b.i.d. in rhesus monkeys. The lungs revealed hypertrophy of type 2 pneumocytes, with accumulation of intra-alveolar macrophages. Transmission electron microscopy confirmed increased lamellar structures within hypertrophic type 2 pneumocytes. Hypertrophy and hyperplasia of type 2 pneumocytes with accumulation of intra-alveolar macrophages admixed with neutrophils were prominent at peripheral lungs of animals receiving compound 25 or MK-1468. Affected type 2 pneumocytes were immuno-positive for pro-surfactant C, but negative for CD11c, a marker for intra-alveolar macrophages. Accumulation of collagen within alveolar walls, confirmed by histochemical trichrome stain, accompanied changes described for compound 25 and MK-1468. Following a 12-week treatment-free interval, animals previously receiving MK-1468 for 30 days exhibited remodeling of alveolar structure and interstitial components that did not demonstrate reversibility.


Assuntos
Pulmão , Alvéolos Pulmonares , Animais , Macaca mulatta , Macrófagos Alveolares , Hipertrofia/induzido quimicamente
2.
Toxicol Appl Pharmacol ; 406: 115216, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32871117

RESUMO

Indoleamine-2,3-dioxygenase 1 (IDO1) and tryptophan-2,3-dioxygenase 2 (TDO2) degrade tryptophan (Trp) to kynurenine (Kyn), and these enzymes have promise as therapeutic targets. A comprehensive characterization of potential safety liabilities of IDO1 and TDO2 inhibitors using knockout (KO) mice has not been assessed, nor has the dual Ido1/Tdo2 KO been reported. Here we characterized male and female mice with KOs for Ido1, Tdo2, and Ido1/Tdo2 and compared findings to the wild type (WT) mouse strain, evaluated for 14 days, using metabolomics, transcriptional profiling, behavioral analysis, spleen immunophenotyping, comprehensive histopathological analysis, and serum clinical chemistry. Multiple metabolomic changes were seen in KO mice. For catabolism of Trp to Kyn and anthranilic acid, both substrates were decreased in liver of Tdo2 and dual KO mice. Metabolism of Trp to serotonin and its metabolites resulted in an increase in 5-Hydroxyindole-3-acetic acid in the Tdo2 and dual KO mice. Ido1 and dual KO mice displayed a Kyn reduction in plasma but not in liver. Nicotinamide synthesis and conversion of glucose to lactic acid were not impacted. A slight decrease in serum alkaline phosphatase was seen in all KOs, and small changes in liver gene expression of genes unrelated to tryptophan metabolism were observed. Regarding other parameters, no genotype-specific changes were observed. In summary, this work shows metabolomic pathway changes for metabolites downstream of tryptophan in these KO mice, and suggests that inhibition of the IDO1 and TDO2 enzymes would be well tolerated whether inhibited individually or in combination since no safety liabilities were uncovered.


Assuntos
Indolamina-Pirrol 2,3,-Dioxigenase/genética , Triptofano Oxigenase/genética , Triptofano/metabolismo , Animais , Feminino , Cinurenina/metabolismo , Fígado/metabolismo , Masculino , Redes e Vias Metabólicas , Metabolômica , Camundongos Knockout , Serotonina/metabolismo , Baço/imunologia , ortoaminobenzoatos/metabolismo
3.
Toxicol Pathol ; 45(5): 633-648, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28830331

RESUMO

Lack of biomarkers specific to and either predictive or diagnostic of drug-induced vascular injury (DIVI) continues to be a major obstacle during drug development. Biomarkers derived from physiologic responses to vessel injury, such as inflammation and vascular remodeling, could make good candidates; however, they characteristically lack specificity for vasculature. We evaluated whether vascular remodeling-associated protease activity, as well as changes to vessel permeability resulting from DIVI, could be visualized ex vivo in affected vessels, thereby allowing for visual monitoring of the pathology to address specificity. We found that visualization of matrix metalloproteinase activation accompanied by increased vascular leakage in the mesentery of rats treated with agents known to induce vascular injury correlated well with incidence and severity of histopathological findings and associated inflammation as well as with circulating levels of tissue inhibitors of metalloproteinase 1 and neutrophil gelatinase-associated lipocalin. The weight of evidence approach reported here shows promise as a composite DIVI preclinical tool by means of complementing noninvasive monitoring of circulating biomarkers of inflammation with direct imaging of affected vasculature and thus lending specificity to its interpretation. These findings are supportive of a potential strategy that relies on translational imaging tools in conjunction with circulating biomarker data for high-specificity monitoring of VI both preclinically and clinically.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Metaloproteinases da Matriz/metabolismo , Imagem Óptica/métodos , Lesões do Sistema Vascular/induzido quimicamente , Lesões do Sistema Vascular/diagnóstico por imagem , Animais , Biomarcadores/análise , Cães , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Corantes Fluorescentes/análise , Corantes Fluorescentes/química , Imuno-Histoquímica , Masculino , Metaloproteinases da Matriz/química , Artérias Mesentéricas/diagnóstico por imagem , Ratos , Ratos Sprague-Dawley
4.
Toxicol Sci ; 168(1): 110-125, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30496518

RESUMO

Liver and skeletal muscle-specific microRNAs (miRNAs) are currently being evaluated as novel plasma biomarkers that may out-perform or add value to the conventional liver injury biomarkers alanine aminotransferase (ALT) and aspartate aminotransferase (AST), and to the skeletal muscle injury biomarkers AST and creatine kinase (CK). A comprehensive evaluation was conducted to assess the relative performance of these miRNAs to detect and distinguish liver from muscle tissue injury. The performance of miR-122 and miR-192 for liver and miR-1, miR-133a, miR-133b, and miR-206 for skeletal muscle was compared with 10 enzymatic or protein biomarkers across 27 compounds causing specific types of tissue injury in rat. Receiver operator characteristic analyses were performed comparing the relative sensitivity and specificity of each of the biomarkers in individual animals with histopathology observations of necrosis and/or degeneration in various organs. All of the miRNAs outperformed ALT, AST, and/or CK in studies with either liver or skeletal muscle injury and demonstrated superior specificity in organs without type-specific injury (eg, liver biomarkers assessed with compounds that cause skeletal muscle injury). When additional protein biomarkers were included, glutamate dehydrogenase, arginase I, alpha-glutathione S-transferase for liver and skeletal troponin I, myosin light chain 3, fatty acid-binding protein 3, and creatine kinase M isoform for skeletal muscle, the miRNAs demonstrated equal or superior performance to the extended panel. Taken together, this comprehensive evaluation demonstrates that these novel miRNA toxicity biomarkers outperform and add value with respect to sensitivity and specificity over ALT, AST in monitoring the liver and over CK for monitoring skeletal muscle drug-induced injury.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/diagnóstico , Fígado/metabolismo , MicroRNAs/sangue , Músculo Esquelético/metabolismo , Doenças Musculares/diagnóstico , Alanina Transaminase/sangue , Animais , Aspartato Aminotransferases/sangue , Biomarcadores/sangue , Doença Hepática Induzida por Substâncias e Drogas/sangue , Creatina Quinase Forma MM/sangue , Feminino , Masculino , Doenças Musculares/sangue , Doenças Musculares/induzido quimicamente , Ratos , Ratos Sprague-Dawley , Ratos Wistar
5.
Toxicol Sci ; 170(1): 180-198, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30903168

RESUMO

Inhibition of the bile salt export pump (BSEP) may be associated with clinical drug-induced liver injury, but is poorly predicted by preclinical animal models. Here we present the development of a novel rat model using siRNA knockdown (KD) of Bsep that displayed differentially enhanced hepatotoxicity to 8 Bsep inhibitors and not to 3 Bsep noninhibitors when administered at maximally tolerated doses for 7 days. Bsep KD alone resulted in 3- and 4.5-fold increases in liver and plasma levels, respectively, of the sum of the 3 most prevalent taurine conjugated bile acids (T3-BA), approximately 90% decrease in plasma and liver glycocholic acid, and a distinct bile acid regulating gene expression pattern, without resulting in hepatotoxicity. Among the Bsep inhibitors, only asunaprevir and TAK-875 resulted in serum transaminase and total bilirubin increases associated with increases in plasma T3-BA that were enhanced by Bsep KD. Benzbromarone, lopinavir, and simeprevir caused smaller increases in plasma T3-BA, but did not result in hepatotoxicity in Bsep KD rats. Bosentan, cyclosporine A, and ritonavir, however, showed no enhancement of T3-BA in plasma in Bsep KD rats, as well as Bsep noninhibitors acetaminophen, MK-0974, or clarithromycin. T3-BA findings were further strengthened through monitoring TCA-d4 converted from cholic acid-d4 overcoming interanimal variability in endogenous bile acids. Bsep KD also altered liver and/or plasma levels of asunaprevir, TAK-875, TAK-875 acyl-glucuronide, benzbromarone, and bosentan. The Bsep KD rat model has revealed differences in the effects on bile acid homeostasis among Bsep inhibitors that can best be monitored using measures of T3-BA and TCA-d4 in plasma. However, the phenotype caused by Bsep inhibition is complex due to the involvement of several compensatory mechanisms.


Assuntos
Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Modelos Animais de Doenças , Preparações Farmacêuticas/administração & dosagem , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/genética , Animais , Bilirrubina/sangue , Técnicas de Silenciamento de Genes , Masculino , RNA Interferente Pequeno/genética , Ratos , Ratos Wistar , Ácido Tauroquenodesoxicólico/sangue , Transaminases/sangue
6.
J Med Chem ; 62(9): 4370-4382, 2019 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-30986068

RESUMO

PI3Kδ catalytic activity is required for immune cell activation, and has been implicated in inflammatory diseases as well as hematological malignancies in which the AKT pathway is overactive. A purine PI3Kδ inhibitor bearing a benzimidazolone-piperidine motif was found to be poorly tolerated in dog, which was attributed to diffuse vascular injury. Several strategies were implemented to mitigate this finding, including reconstruction of the benzimidazolone-piperidine selectivity motif. Structure-based design led to the identification of O- and N-linked heterocycloalkyls, with pyrrolidines being particularly ligand efficient and kinome selective, and having an improved safety pharmacology profile. A representative was advanced into a dog tolerability study where it was found to be well tolerated, with no histopathological evidence of vascular injury.


Assuntos
Classe Ia de Fosfatidilinositol 3-Quinase/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Purinas/farmacologia , Pirrolidinas/farmacologia , Animais , Cães , Desenho de Fármacos , Células HeLa , Humanos , Masculino , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/toxicidade , Purinas/síntese química , Purinas/toxicidade , Pirrolidinas/síntese química , Pirrolidinas/toxicidade , Ratos Wistar
7.
Science ; 357(6350): 507-511, 2017 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-28705990

RESUMO

5'-Adenosine monophosphate-activated protein kinase (AMPK) is a master regulator of energy homeostasis in eukaryotes. Despite three decades of investigation, the biological roles of AMPK and its potential as a drug target remain incompletely understood, largely because of a lack of optimized pharmacological tools. We developed MK-8722, a potent, direct, allosteric activator of all 12 mammalian AMPK complexes. In rodents and rhesus monkeys, MK-8722-mediated AMPK activation in skeletal muscle induced robust, durable, insulin-independent glucose uptake and glycogen synthesis, with resultant improvements in glycemia and no evidence of hypoglycemia. These effects translated across species, including diabetic rhesus monkeys, but manifested with concomitant cardiac hypertrophy and increased cardiac glycogen without apparent functional sequelae.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Cardiomegalia/induzido quimicamente , Glucose/metabolismo , Homeostase/efeitos dos fármacos , Imidazóis/farmacologia , Piridinas/farmacologia , Animais , Benzimidazóis , Glicemia/efeitos dos fármacos , Jejum , Glicogênio/metabolismo , Hipoglicemia/induzido quimicamente , Imidazóis/efeitos adversos , Imidazóis/química , Insulina/farmacologia , Macaca mulatta , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Piridinas/efeitos adversos , Piridinas/química
9.
J Virol ; 78(12): 6399-408, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15163733

RESUMO

Viral suppression by noncytolytic CD8+ T cells, in addition to that by classic antiviral CD8+ cytotoxic T lymphocytes, has been described for human immunodeficiency virus and simian immunodeficiency virus (SIV) infections. However, the role of soluble effector molecules, especially beta-chemokines, in antiviral immunity is still controversial. In an attenuated vaccine model, approximately 60% of animals immunized with simian/human immunodeficiency virus (SHIV) 89.6 and then challenged intravaginally with SIVmac239 controlled viral replication (viral RNA level in plasma, <10(4) copies/ml) and were considered protected (K. Abel, L. Compton, T. Rourke, D. Montefiori, D. Lu, K. Rothaeusler, L. Fritts, K. Bost, and C. J. Miller, J. Virol. 77:3099-3118, 2003). To determine the in vivo importance of beta-chemokine secretion and CD8+-T-cell proliferation in the control of viral replication in this vaccine model, we examined the relationship between viral RNA levels in the axillary and genital lymph nodes of vaccinated, protected (n = 20) and vaccinated, unprotected (n = 11) monkeys by measuring beta-chemokine mRNA levels and protein expression, the frequency of CD8+ T cells expressing beta-chemokines, and the extent of CD8+-T-cell proliferation. Tissues from uninfected (n = 3) and unvaccinated, SIVmac239-infected (n = 9) monkeys served as controls. Axillary and genital lymph nodes from unvaccinated and vaccinated, unprotected monkeys had significantly higher beta-chemokine mRNA expression levels and increased numbers of beta-chemokine-positive cells than did vaccinated, protected animals. Furthermore, the lymph nodes of vaccinated, unprotected monkeys had significantly higher numbers of beta-chemokine(+) CD8+ T cells than did vaccinated, protected monkeys. Lymph nodes from vaccinated, unprotected animals also had significantly more CD8+-T-cell proliferation and marked lymph node hyperplasia than the lymph nodes of vaccinated, protected monkeys. Thus, higher levels of virus replication were associated with increased beta-chemokine secretion and there is no evidence that beta-chemokines contributed to the SHIV89.6-mediated control of viral replication after intravaginal challenge with SIVmac239.


Assuntos
Vacinas contra a AIDS/administração & dosagem , Quimiocinas CC/metabolismo , Linfonodos/imunologia , Vacinas contra a SAIDS/administração & dosagem , Vírus da Imunodeficiência Símia/patogenicidade , Replicação Viral , Animais , Linfócitos T CD8-Positivos/imunologia , Infecções por HIV/prevenção & controle , HIV-1/imunologia , Humanos , Linfonodos/metabolismo , Linfonodos/virologia , Ativação Linfocitária , Macaca mulatta , RNA Viral/análise , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/imunologia , Vírus da Imunodeficiência Símia/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa