Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 25(3): 2312-2326, 2017 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-29519078

RESUMO

We report laser-induced fluorescence spectroscopy (LIF) of laser-produced plasmas under varying nitrogen pressure levels up to atmospheric pressure. The plasmas were generated on a glass target containing minor amounts of U and Al using 1064 nm, 6 ns pulses from a Nd:YAG laser. A frequency-doubled continuous-wave Ti:Sapphire laser was used as an ultra-narrowband tunable LIF excitation source to increase the magnitude and persistence of emission from selected U and Al atomic transitions in a laser-produced plasma. 2D-fluorescence spectroscopy (2D-FS) absorption/emission images were recorded at various nitrogen pressure levels, showing both excitation and emission spectral features. At lower pressure levels (⪝100 Torr), fluorescence emission was found to be well separated in time from thermally-excited emission. However, as the ambient pressure increased, the thermally-excited emission persisted for longer times along with a reduction of LIF emission persistence and intensity. The excitation spectral features showed the inherent linewidths of various transitions in the plasma, which have significantly narrower spectral linewidths than observed in emission spectra. We evaluated two nearby transitions separated by only 18 pm to demonstrate the effectiveness of fluorescence spectra over thermally-excited spectra for high-resolution studies. The present results highlight the importance of LIF as a diagnostic tool employing continuous-wave laser re-excitation, addressing some of the limitations of traditional emission and absorption spectroscopic methods.

2.
Opt Lett ; 41(15): 3547-50, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27472615

RESUMO

We use a two-dimensional laser-induced fluorescence spectroscopy technique to measure the coupled absorption and emission properties of atomic species in plasmas produced via laser ablation of a solid aluminum target at atmospheric pressure. Emission spectra from the Al I 394.4 nm and Al I 396.15 nm transitions are measured while a frequency-doubled, continuous wave (cw) Ti:sapphire laser is tuned across the Al I 396.15 nm transition. The resulting two-dimensional spectra show the energy coupling between the two transitions via increased emission intensity for both transitions during resonant absorption of the cw laser at one transition. Time-delayed, gated detection of the emission spectrum is used to isolate resonantly excited fluorescence emission from thermally excited emission from the plasma. In addition, the tunable cw laser measures the absorption spectrum of the Al transition with ultrahigh resolution after the plasma has cooled, resulting in narrower spectral linewidths than observed in emission spectra. Our results highlight that fluorescence spectroscopy employing cw laser re-excitation after pulsed laser ablation combines benefits of both traditional emission and absorption spectroscopic methods.

3.
J Appl Phys ; 114(2)2013 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-26640294

RESUMO

We investigated the role of femtosecond (fs) laser wavelength on laser ablation (LA) and its relation to laser generated aerosol counts and particle distribution, inductively coupled plasma-mass spectrometry (ICP-MS) signal intensity, detection limits, and elemental fractionation. Four different NIST standard reference materials (610, 613, 615, and 616) were ablated using 400 nm and 800 nm fs laser pulses to study the effect of wavelength on laser ablation rate, accuracy, precision, and fractionation. Our results show that the detection limits are lower for 400 nm laser excitation than 800 nm laser excitation at lower laser energies but approximately equal at higher energies. Ablation threshold was also found to be lower for 400 nm than 800 nm laser excitation. Particle size distributions are very similar for 400 nm and 800 nm wavelengths; however, they differ significantly in counts at similar laser fluence levels. This study concludes that 400 nm LA is more beneficial for sample introduction in ICP-MS, particularly when lower laser energies are to be used for ablation.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa