RESUMO
BACKGROUND: Lead neurotoxicity is associated with numerous alterations including behavioral and neurochemical disruptions. This study evaluates the possible neurochemical disruption in the subcommissural organ (SCO) after acute (three days) and subchronic (six weeks) Pb-exposure inMeriones shawi, and the possible effect of the third active compound, curcumin-III, in mitigating the neurological alterations caused by lead exposure. METHODS: Using immunohistochemical stainings, we evaluated the Reissner's fiber (RF) secretion utilizing RF-antibody in the SCO. We compared both acute (25 mg/kg bw of Pb i.p. for 3 days) and subchronic (3 g/l of Pb in drinking water for six weeks) Pb-treatedMeriones shawi. RESULTS: The two models of lead exposure showed a significant increase in RF level in the SCO. Conversely, co-treatment with Curcumin-III at a dose of 30 mg/kg bw significantly ameliorate SCO secretory activity, as revealed by decreased RF-immunoreactivity. CONCLUSION: Together, our findings suggest the protective effects of Curcumin-III in regulating the secretory activity of the SCO after Pb-induced neuroanatomical disruptions of the SCO in Meriones.
Assuntos
Curcumina , Órgão Subcomissural , Animais , Chumbo/análise , Imuno-Histoquímica , Gerbillinae , Órgão Subcomissural/química , Órgão Subcomissural/fisiologia , Curcumina/farmacologiaRESUMO
Aluminum (Al) is recognized potent neurotoxic metal, which causes oxidative stress leading to intracellular accumulation of reactive oxygen species (ROS) and neuronal cell death in various neurodegenerative diseases. Among several medicinal plants with beneficial effects on health, curcumin acts as a multi-functional drug with antioxidant activity. Thus, the purpose of the present study was to evaluate the protective effect of curcumin against aluminum induced-oxidative stress and astrocytes death, in vitro ad in vivo. Incubation of cultured rat astrocytes with two concentrations of Al (37 µM and 150 µM) for 1 h provoked a dose-dependent reduction of the number of living cells as evaluated by Fluorescein diacetate and lactate dehydrogenase assay. Al-treated cells exhibited a reduction of both superoxide dismutase (SOD) and catalase activities. Pretreatment of astrocytes with curcumin (81 µM) prevented Al-induced cell death. Regarding in vivo study, rats were exposed acutely during three consecutive days to three different doses of Al (25 mg/kg, 50 mg/kg and 100 mg/kg, i.p injection), together with curcumin treatment (30 mg/kg). For the chronic model, animals were exposed to Al (3 g/l) in drinking water from intrauterine age to 4 months ages, plus curcumin treatment (175 mg/kg). Data showed that both acute and chronic Al intoxication induced an obvious astrogliosis within motor cortex and hippocampus, while, such effects were restored by curcumin. We showed herein that Al was highly toxic, induced astrocytes death. Then, curcumin protected astrocytes against Al-toxicity. The cytoprotective potential of curcumin is initiated by stimulation of endogenous antioxidant system.
Assuntos
Alumínio/toxicidade , Antioxidantes/farmacologia , Astrócitos/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Curcumina/farmacologia , Gliose/induzido quimicamente , Estresse Oxidativo/efeitos dos fármacos , Animais , Antioxidantes/uso terapêutico , Astrócitos/patologia , Curcumina/uso terapêutico , Gliose/patologia , Gliose/prevenção & controle , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismoRESUMO
Aluminum (Al) among the abundant metals on the earth crust, is able to cross the biological barriers via the gastrointestinal and lung tissues. Once in the body, this heavy metal accumulates in different organs, especially the central nervous system. Though its influence is evidently shown in the substantia nigra of Parkinson's disease patients and other brain areas in other neurodegenerative diseases, few studies have demonstrated that Al could trigger profound changes in neurotransmission systems including the dopaminergic (DAergic) system. A variety of medicinal plants may be prescribed in such contamination, including some culinary spices such as Curcumin (Cur). Several studies have proven Cur to exhibit a wide variety of biological and pharmacological activities, especially its antioxidant potential. Using the immunohistochemistry, of tyrosine hydroxylase (TH), in the midbrain substantia nigra pars compact (SNc) and the ventral tegmental area (VTA) and the open field test, we examined the DAergic system together with the locomotor behavior respectively in rats exposed chronically to Al (0,3%) in drinking water during 4 months since the intra-uterine age, as well as the neuroprotective effect of the concomitant administration of Cur I (30 mg/kg B.W) of chronic Al exposed rats. Our results have shown a significant decrease of TH immureactivity in both SNc and VTA associated to a loss of the number of crossed boxes, leading to a difficient locomotor performance in the Al group while Cur I prevents such TH immunoreactivity impairment and maintains a higher locomotor activity in the Al-CurI group. Our findings lead to suppose a powerful and obvious neuroprotective potential of CurI against Al-induced neurotoxicity of the DAergic system involved in the control of the locomotor behavior.
Assuntos
Alumínio/toxicidade , Curcumina/farmacologia , Locomoção/efeitos dos fármacos , Mesencéfalo/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Síndromes Neurotóxicas , Animais , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/patologia , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/patologia , Ratos , Ratos WistarRESUMO
Aluminum (Al) causes multiple impairments in several body systems including the central nervous system. In fact, Al exposure has been mostly associated with neurological dysfunctions that occur in some brain diseases. The effect of Al neurotoxicity on the dopaminergic system is well documented, but this effect on the serotoninergic system is poorly studied. The aim of this work is to evaluate the effect of chronic Al intoxication (0.3% of aluminum chloride exposure from the intra-uterine age until 4 months of adult age) on dorsal raphe nucleus (DRN) which is the main source of serotonin, and also on the glycoprotein secretion of subcomissural organ (SCO), receiving important serotoninergic innervation. This will be executed using immunohistochemistry procedure, with both the anti serotonin and the anti Reissner's fiber antibodies in the rat. Our results showed a significant increase of serotonin immunoreactivity in the DRN, accompanied by a noticeable decrease of RF immunoreactivity in the SCO ependymocytes. This study provides further evidence confirming the toxic effect of Al exposure on serotonin neurotransmission in the brain likely through increased synthesis or decreased release. Al exposure was also shown to decrease RF glycoprotein which is involved in the detoxification of cerebrospinal fluid.