Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
J Org Chem ; 88(14): 9750-9759, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37418758

RESUMO

The Banert cascade is an efficient synthetic strategy for obtaining 4,5-disubstituted 1,2,3-triazoles. The reaction can proceed via a sigmatropic or prototropic mechanism depending on the substrate and the conditions. In this work, the mechanisms of both pathways from propargylic azides with different electronic features were investigated using density functional theory, quantum theory of atoms in molecules, and natural bond orbital approaches. The calculated energy barriers were consistent with the experimental data. Three patterns of electron density distribution on the transition structures were observed, which reflected the behaviors of the reactants in the Banert cascade. The stronger conjugative effects were associated with lower/higher free activation energies of sigmatropic/prototropic reactions, respectively. A clear relationship between the accumulation of the charge at the C3 atom of propargylic azides with the energy barriers for prototropic reactions was found. Thus, the obtained results would allow the prediction of the reaction's course by evaluating reactants.

2.
Bioorg Med Chem ; 92: 117417, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37531922

RESUMO

Salirasib, or farnesylthiosalicylic acid (FTS), is a salicylic acid derivative with demonstrated antineoplastic activity. While designed as a competitor of the substrate S-farnesyl cysteine on Ras, it is a potent competitive inhibitor of isoprenylcysteine carboxymethyl transferase. In this study, the antiproliferative activity on six different solid tumor cell lines was evaluated with a series of lipophilic thioether modified salirasib analogues, including those with or without a 1,2,3-triazole linker. A combination of bioassay, cheminformatics, docking, and in silico ADME-Tox was also performed. SAR analysis that analogues with three or more isoprene units or a long aliphatic chain exhibited the most potent activity. Furthermore, three compounds display superior antiproliferative activity than salirasib and similar potency compared to control anticancer drugs across all tested solid tumor cell lines. In addition, the behavior of the collection on migration and invasion, a key process in tumor metastasis, was also studied. Three analogues with specific antimigratory activity were identified with differential structural features being interesting starting points on the development of new antimetastatic agents. The antiproliferative and antimigratory effects observed suggest that modifying the thiol aliphatic/prenyl substituents can modulate the activity.


Assuntos
Antineoplásicos , Antineoplásicos/farmacologia , Salicilatos/farmacologia , Farneseno Álcool/farmacologia , Linhagem Celular Tumoral , Proliferação de Células
3.
Bioorg Med Chem ; 44: 116304, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34289431

RESUMO

A series of C15-C20 isoprenyl derivatives bearing terminal alkenyl and alkynyl groups were synthesized as possible substrates of the methyl-branched lipid ω-hydroxylase CYP124A1 from Mycobacterium tuberculosis. The interactions of each compound with the enzyme active site were characterized using UV-vis spectroscopy. We found that C10 and C15 analogs bind with similar affinity to the corresponding parent C10 and C15 substrates geraniol and farnesol, respectively. Three analogs (C10-ω-ene, C10-ω-yne, C15-ω-yne) interact with the proximal side of the heme iron by coordinating to the oxygen atom of the ferric heme, as judged by the appearance of typical Type-IA binding spectra. On the other hand, the C15-ω-ene analog interacts with the ferric heme by displacing the bound water that generates a typical Type I binding spectrum. We were unable to detect P450-mediated oxidation of these probes following extended incubations with CYP124A1 in our reconstituted assay system, whereas a control reaction containing farnesol was converted to ω-hydroxy farnesol under the same conditions. To understand the lack of detectable oxidation, we explored the possibility that the analogs were acting as mechanism-based inhibitors, but we were unable to detect time-dependent loss of enzymatic activity. In order to gain insight into the lack of detectable turnover or time-dependent inhibition, we examined the interaction of each compound with the CYP124A1 active site using molecular docking simulations. The docking studies revealed a binding mode where the terminal unsaturated functional groups were sequestered within the methyl-binding pocket, rather than positioned close to the heme iron for oxidation. These results aid in the design of specific inhibitors of Mtb-CYP124A1, an interesting enzyme that is implicated in the oxidation of methyl-branched lipids, including cholesterol, within a deadly human pathogen.


Assuntos
Citocromo P-450 CYP4A/metabolismo , Sondas Moleculares/metabolismo , Mycobacterium tuberculosis/enzimologia , Terpenos/metabolismo , Citocromo P-450 CYP4A/química , Sondas Moleculares/química , Estrutura Molecular , Terpenos/química
4.
Bioorg Med Chem Lett ; 30(20): 127491, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32795626

RESUMO

A series of synthetic 1,2,4-trioxanes related to artemisinin was tested against L. donovani and T. cruzi parasites. This screening identified some active compounds, with key common structural features. Interestingly, these selected trioxanes were efficient against both parasites, and achieved antiparasitic activities comparable or superior than those presented by the corresponding reference drugs, artemisinin and artesunate. This study represents the first example of synthetic trioxanes evaluated on T. cruzi and provides possible candidates for developing new drugs for the treatment of leishmaniasis and Chagas disease.


Assuntos
Antiparasitários/farmacologia , Compostos Heterocíclicos/farmacologia , Leishmania donovani/efeitos dos fármacos , Trypanosoma cruzi/efeitos dos fármacos , Antiparasitários/síntese química , Antiparasitários/química , Relação Dose-Resposta a Droga , Compostos Heterocíclicos/síntese química , Compostos Heterocíclicos/química , Estrutura Molecular , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade
5.
Parasitology ; 147(6): 611-633, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32046803

RESUMO

During three decades, only about 20 new drugs have been developed for malaria, tuberculosis and all neglected tropical diseases (NTDs). This critical situation was reached because NTDs represent only 10% of health research investments; however, they comprise about 90% of the global disease burden. Computational simulations applied in virtual screening (VS) strategies are very efficient tools to identify pharmacologically active compounds or new indications for drugs already administered for other diseases. One of the advantages of this approach is the low time-consuming and low-budget first stage, which filters for testing experimentally a group of candidate compounds with high chances of binding to the target and present trypanocidal activity. In this work, we review the most common VS strategies that have been used for the identification of new drugs with special emphasis on those applied to trypanosomiasis and leishmaniasis. Computational simulations based on the selected protein targets or their ligands are explained, including the method selection criteria, examples of successful VS campaigns applied to NTDs, a list of validated molecular targets for drug development and repositioned drugs for trypanosomatid-caused diseases. Thereby, here we present the state-of-the-art of VS and drug repurposing to conclude pointing out the future perspectives in the field.


Assuntos
Biologia Computacional/estatística & dados numéricos , Descoberta de Drogas/estatística & dados numéricos , Leishmaniose/tratamento farmacológico , Tripanossomicidas/farmacologia , Tripanossomíase/tratamento farmacológico , Animais , Simulação por Computador , Humanos , Camundongos
6.
Biochim Biophys Acta Gen Subj ; 1861(11 Pt A): 2913-2921, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28844978

RESUMO

BACKGROUND: Trypanosoma cruzi, the etiological agent of Chagas disease, uses proline as its main carbon source, essential for parasite growth and stage differentiation in epimastigotes and amastigotes. Since proline is involved in many essential biological processes in T. cruzi, its transport and metabolism are interesting drug targets. METHODS: Four synthetic proline analogues (ITP-1B/1C/1D/1G) were evaluated as inhibitors of proline transport mediated through the T. cruzi proline permease TcAAAP069. The trypanocidal activity of the compounds was also assessed. RESULTS: The compounds ITP-1B and ITP-1G inhibited proline transport mediated through TcAAAP069 permease in a dose-dependent manner. The analogues ITP-1B, -1D and -1G had trypanocidal effect on T. cruzi epimastigotes with IC50 values between 30 and 40µM. However, only ITP-1G trypanocidal activity was related with its inhibitory effect on TcAAAP069 proline transporter. Furthermore, this analogue strongly inhibited the parasite stage differentiation from epimastigote to metacyclic trypomastigote. Finally, compounds ITP-1B and ITP-1G were also able to inhibit the transport mediated by other permeases from the same amino acid permeases family, TcAAAP. CONCLUSIONS: It is possible to design synthetic amino acid analogues with trypanocidal activity. The compound ITP-1G is an interesting starting point for new trypanocidal drug design which is also an inhibitor of transport of amino acids and polyamines mediated by permeases from the TcAAAP family, such as proline transporter TcAAAP069 among others. GENERAL SIGNIFICANCE: The Trypanosoma cruzi amino acid transporter family TcAAAP constitutes a multiple and promising therapeutic target for the development of new treatments against Chagas disease.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/genética , Doença de Chagas/tratamento farmacológico , Prolina/farmacologia , Tripanossomicidas/farmacologia , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Aminoácidos/genética , Animais , Doença de Chagas/genética , Doença de Chagas/parasitologia , Humanos , Prolina/análogos & derivados , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/patogenicidade
7.
Mol Divers ; 20(2): 407-19, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26525879

RESUMO

A diversity-oriented approach for the synthesis of various structurally different prenylated alcohols from readily accessible and common precursors was developed. With varying approaches, this article describes some successful examples of a Friedel-Crafts alkylation using methoxyphenols and different prenyl alcohols (geraniol and (E,E)-farnesol). We demonstrated that just by varying the stoichiometry of the Lewis acid used, the course of the reaction can be shifted to produce the alkylated or the cyclized product. Eighteen unique products were obtained with good isolated yields by direct alkylation with or without a consecutive π-cationic cyclization.


Assuntos
Ácidos de Lewis/química , Fenol/química , Prenilação , Alquilação , Ciclização , Isomerismo
8.
Antimicrob Agents Chemother ; 57(2): 907-13, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23208707

RESUMO

We have synthesized new derivatives of the macrolide antibiotics erythromycin and azithromycin. Novel deoxysugar moieties were attached to these standard antibiotics by biotransformation using a heterologous host. The resulting compounds were tested against several standard laboratory and clinically isolated bacterial strains. In addition, they were also tested in vitro against standard and drug-resistant strains of human malaria parasites (Plasmodium falciparum) and the liver stages of the rodent malaria parasite (Plasmodium berghei). Antibacterial activity of modified erythromycin and azithromycin showed no improvement over the unmodified macrolides, but the modified compounds showed a 10-fold increase in effectiveness after a short-term exposure against blood stages of malaria. The new compounds also remained active against azithromycin-resistant strains of P. falciparum and inhibited growth of liver-stage parasites at concentrations similar to those used for primaquine. Our findings show that malaria parasites have two distinct responses to macrolide antibiotics, one reflecting the prokaryotic origin of the apicoplast and a second, as-yet uncharacterized response that we attribute to the eukaryotic nature of the parasite. This is the first report for macrolides that target two different functions in the Plasmodium parasites.


Assuntos
Antimaláricos/síntese química , Antimaláricos/farmacologia , Plasmodium berghei/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Azitromicina/análogos & derivados , Azitromicina/farmacologia , Cloroquina/farmacologia , Resistência a Medicamentos , Eritromicina/análogos & derivados , Eritromicina/farmacologia , Macrolídeos/síntese química , Macrolídeos/farmacologia , Malária/tratamento farmacológico , Malária/parasitologia , Testes de Sensibilidade Parasitária , Plasmodium berghei/crescimento & desenvolvimento , Plasmodium falciparum/crescimento & desenvolvimento
9.
Bioconjug Chem ; 24(4): 571-7, 2013 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-23458569

RESUMO

The high selectivity of protein farnesyltransferase was used to regioselectively append farnesyl analogues bearing bioorthogonal alkyne and azide functional groups to recombinant Schistosoma japonicum glutathione S-transferase (GSTase) and the active modified protein was covalently attached to glass surfaces. The cysteine residue in a C-terminal CVIA sequence appended to N-terminally His(6)-tagged glutathione S-transferase (His(6)-GSTase-CVIA) was post-translationally modified by incubation of purified protein or cell-free homogenates from E. coli M15/pQE-His(6)-GSTase-CVIA with yeast protein farnesyltransferase (PFTase) and analogues of farnesyl diphosphate (FPP) containing ω-azide and alkyne moieties. The modified proteins were added to wells on silicone-matted glass slides whose surfaces were modified with PEG units containing complementary ω-alkyne and azide moieties and covalently attached to the surface by a Cu(I)-catalyzed Huisgen [3 + 2] cycloaddition. The wells were washed and assayed for GSTase activity by monitoring the increase in A(340) upon addition of 1-chloro-2,4-dinitrobenzene (CDNB) and reduced glutathione (GT). GSTase activity was substantially higher in the wells spotted with alkyne (His(6)-GSTase-CVIA-PE) or azide (His(6)-GSTase-CVIA-AZ) modified glutathione-S-transferase than in control wells spotted with farnesyl-modified enzyme (His(6)-GSTase-CVIA-F).


Assuntos
Biocatálise , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Vidro/química , Glutationa Transferase/química , Animais , Ativação Enzimática , Glutationa Transferase/metabolismo , Modelos Moleculares , Estrutura Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Schistosoma japonicum/enzimologia , Estereoisomerismo , Propriedades de Superfície
10.
J Med Chem ; 66(21): 14377-14390, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37903297

RESUMO

The 1,2,3-triazole scaffold has become very attractive to identify new chemical entities in drug discovery projects. Despite the widespread use of click chemistry to synthesize numerous 123Ts, there are few drugs on the market that incorporate this scaffold as a substructure. To investigate the true potential of 123Ts in protein-ligand interactions, we examined the noncovalent interactions between the 1,2,3-triazole ring and amino acids in protein-ligand cocrystals using a geometrical approach. For this purpose, we constructed a nonredundant database of 220 PDB IDs from available 123T-protein cocrystal structures. Subsequently, using the Protein Ligand Interaction Profiler web platform (PLIP), we determined whether 1,2,3-triazoles primarily act as linkers or if they can be considered interactive scaffolds. We then manually analyzed the geometrical descriptors from 333 interactions between 1,4-disubstituted 123T rings and amino acid residues in proteins. This study demonstrates that 1,2,3-triazoles exhibit diverse preferred interactions with amino acids, which contribute to protein-ligand binding.


Assuntos
Proteínas , Triazóis , Triazóis/química , Ligantes , Cristalografia , Proteínas/química , Aminoácidos , Química Click
11.
RSC Med Chem ; 14(1): 122-134, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36760749

RESUMO

We have previously shown that prenyl and aliphatic triazoles are interesting motifs to prepare new chemical entities for antiparasitic and antituberculosis drug development. In this opportunity a new series of prenyl-1,2,3-triazoles were prepared from isoprenyl azides and different alkynes looking for new antimalarial drug candidates. The compounds were prepared by copper(i) catalyzed dipolar cycloaddition of the isoprenyl azide equilibrium mixture providing exclusively 1,4-disubstituted 1,2,3-triazoles in a regiospecific fashion. The complete collection of 64 compounds was tested on chloroquine-sensitive (CQ sensitive), Sierra Leone (D6), and the chloroquine-resistant, Indochina (W2), strains of Plasmodium falciparum and those compounds which were not previously reported were also tested against Leishmania donovani, the causative agent for visceral leishmaniasis. Thirteen analogs displayed antimalarial activity with IC50 below 10 µM, while the antileishmanial activity of the newly reported analogs could not improve upon those previously reported. Compounds 1o and 1r were identified as the most promising antimalarial drug leads with IC50 below 3.0 µM for both CQ-sensitive and resistant P. falciparum strains with high selectivity index. Finally, a chemoinformatic in silico analysis was performed to evaluate physicochemical parameters, cytotoxicity risk and drug score. The validation of a bifunctional farnesyl/geranylgeranyl diphosphate synthase PfFPPS/GGPPS as the potential target of the antimalarial activity of selected analogs should be further investigated.

12.
Eur J Med Chem ; 254: 115378, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37084599

RESUMO

A series of thirty 1,2,3-triazolylsterols, inspired by azasterols with proven antiparasitic activity, were prepared by a stereocontrolled synthesis. Ten of these compounds constitute chimeras/hybrids of 22,26-azasterol (AZA) and 1,2,3-triazolyl azasterols. The entire library was assayed against the kinetoplastid parasites Leishmania donovani, Trypanosoma cruzi, and Trypanosoma brucei, the causatives agents for visceral leishmaniasis, Chagas disease, and sleeping sickness, respectively. Most of the compounds were active at submicromolar/nanomolar concentrations with high selectivity index, when compared to their cytotoxicity against mammalian cells. Analysis of in silico physicochemical properties were conducted to rationalize the activities against the neglected tropical disease pathogens. The analogs with selective activity against L. donovani (E4, IC50 0.78 µM), T brucei (E1, IC50 0.12 µM) and T. cruzi (B1- IC50 0.33 µM), and the analogs with broad-spectrum antiparasitic activities against the three kinetoplastid parasites (B1 and B3), may be promising leads for further development as selective or broad-spectrum antiparasitic drugs.


Assuntos
Doença de Chagas , Parasitos , Trypanosoma cruzi , Tripanossomíase Africana , Animais , Esteróis/farmacologia , Esteróis/química , Tripanossomíase Africana/tratamento farmacológico , Antiparasitários/química , Doença de Chagas/tratamento farmacológico , Mamíferos
13.
Front Pharmacol ; 14: 1193282, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37426813

RESUMO

Introduction: The identification of chemical compounds that interfere with SARS-CoV-2 replication continues to be a priority in several academic and pharmaceutical laboratories. Computational tools and approaches have the power to integrate, process and analyze multiple data in a short time. However, these initiatives may yield unrealistic results if the applied models are not inferred from reliable data and the resulting predictions are not confirmed by experimental evidence. Methods: We undertook a drug discovery campaign against the essential major protease (MPro) from SARS-CoV-2, which relied on an in silico search strategy -performed in a large and diverse chemolibrary- complemented by experimental validation. The computational method comprises a recently reported ligand-based approach developed upon refinement/learning cycles, and structure-based approximations. Search models were applied to both retrospective (in silico) and prospective (experimentally confirmed) screening. Results: The first generation of ligand-based models were fed by data, which to a great extent, had not been published in peer-reviewed articles. The first screening campaign performed with 188 compounds (46 in silico hits and 100 analogues, and 40 unrelated compounds: flavonols and pyrazoles) yielded three hits against MPro (IC50 ≤ 25 µM): two analogues of in silico hits (one glycoside and one benzo-thiazol) and one flavonol. A second generation of ligand-based models was developed based on this negative information and newly published peer-reviewed data for MPro inhibitors. This led to 43 new hit candidates belonging to different chemical families. From 45 compounds (28 in silico hits and 17 related analogues) tested in the second screening campaign, eight inhibited MPro with IC50 = 0.12-20 µM and five of them also impaired the proliferation of SARS-CoV-2 in Vero cells (EC50 7-45 µM). Discussion: Our study provides an example of a virtuous loop between computational and experimental approaches applied to target-focused drug discovery against a major and global pathogen, reaffirming the well-known "garbage in, garbage out" machine learning principle.

14.
Bioorg Med Chem Lett ; 22(4): 1712-5, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22248858

RESUMO

A series of 25 N,N'-substituted diamines were prepared by controlled reductive amination of free aliphatic diamines with different substituted benzaldehydes. The library was screened in vitro for antiparasitic activity on the causative agents of human African trypanosomiasis, Chagas' disease and visceral leishmaniasis. The most potent compounds were derived from a subset of diamines that contained a 4-OBn substitution, having a 50% parasite growth inhibition in the submicromolar (against Trypanosoma cruzi) or nanomolar (against Trypanosoma brucei and Leishmania donovani) range. We conclude that members of this series of N,N'-substituted diamines provide new lead structures that have potential to treat trypanosomal and leishmanial infections.


Assuntos
Antiprotozoários/síntese química , Antiprotozoários/farmacologia , Diaminas/síntese química , Diaminas/farmacologia , Kinetoplastida/efeitos dos fármacos , Animais , Doença de Chagas/tratamento farmacológico , Diaminas/química , Humanos , Concentração Inibidora 50 , Leishmaniose Visceral/tratamento farmacológico , Estrutura Molecular , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Tripanossomíase Africana/tratamento farmacológico
15.
Mol Divers ; 15(4): 1017-24, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21633789

RESUMO

Looking for new active molecules against Mycobacterium tuberculosis, a small focused library of 1,2,3-triazoles was efficiently prepared by click chemistry. Compounds were subsequently tested against different pathogenic and opportunistic mycobacteria including M. avium and M. tuberculosis. Two of them showed MIC at lower µg/mL concentration for M. avium and even below that for M. tuberculosis, being more potent that control drugs.


Assuntos
Mycobacterium avium/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/farmacologia , Triazóis/síntese química , Triazóis/farmacologia , Química Click , Testes de Sensibilidade Microbiana , Bibliotecas de Moléculas Pequenas/química , Triazóis/química
16.
Chem Biodivers ; 8(6): 1098-111, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21674782

RESUMO

Analogs of curcuphenol/elvirol, naturally occurring bisabolane sesquiterpenes, were prepared in six steps from alkyl-α-tetralones employing an aromatization reaction of cyclic dienone precursors and olefination of the key aldehyde intermediates. The in vitro antifungal activities of 6a, 6b, 6d, and 6g are also reported.


Assuntos
Aldeídos/química , Antifúngicos/química , Sesquiterpenos/química , Antifúngicos/síntese química , Antifúngicos/farmacologia , Ciclização , Testes de Sensibilidade Microbiana , Sesquiterpenos/síntese química , Sesquiterpenos/farmacologia
17.
RSC Med Chem ; 12(1): 120-128, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34046604

RESUMO

Triclosan and isoniazid are known antitubercular compounds that have proven to be also active against Leishmania parasites. On these grounds, a collection of 37 diverse 1,2,3-triazoles based on the antitubercular molecules triclosan and 5-octyl-2-phenoxyphenol (8PP) were designed in search of novel structures with leishmanicidal activity and prepared using different alkynes and azides. The 37 compounds were assayed against Leishmania donovani, the etiological agent of leishmaniasis, yielding some analogs with activity at micromolar concentrations and against M. tuberculosis H37Rv resulting in scarce active compounds with an MIC of 20 µM. To study the mechanism of action of these catechols, we analyzed the inhibition activity of the library on the M. tuberculosis enoyl-ACP reductase (ENR) InhA, obtaining poor inhibition of the enzyme. The cytotoxicity against Vero cells was also tested, resulting in none of the compounds being cytotoxic at concentrations of up to 20 µM. Derivative 5f could be considered a valuable starting point for future antileishmanial drug development. The validation of a putative leishmanial InhA orthologue as a therapeutic target needs to be further investigated.

18.
Appl Environ Microbiol ; 76(12): 3869-77, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20418422

RESUMO

In vivo reconstitution of the TDP-l-megosamine pathway from the megalomicin gene cluster of Micromonospora megalomicea was accomplished by the heterologous expression of its biosynthetic genes in Escherichia coli. Mass spectrometric analysis of the TDP-sugar intermediates produced from operons containing different sets of genes showed that the production of TDP-l-megosamine from TDP-4-keto-6-deoxy-d-glucose requires only five biosynthetic steps, catalyzed by MegBVI, MegDII, MegDIII, MegDIV, and MegDV. Bioconversion studies demonstrated that the sugar transferase MegDI, along with the helper protein MegDVI, catalyzes the transfer of l-megosamine to either erythromycin C or erythromycin D, suggesting two possible routes for the production of megalomicin A. Analysis in vivo of the hydroxylation step by MegK indicated that erythromycin C is the intermediate of megalomicin A biosynthesis.


Assuntos
Aminoglicosídeos/biossíntese , Vias Biossintéticas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Micromonospora/genética , Família Multigênica , Aminoglicosídeos/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Eritromicina/metabolismo , Ordem dos Genes , Glucose/análogos & derivados , Glucose/metabolismo , Modelos Biológicos , Estrutura Molecular , Óperon , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Nucleotídeos de Timina/metabolismo
19.
RSC Adv ; 10(8): 4404-4413, 2020 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35495248

RESUMO

Several allylic azides with different double bond substitutions were studied to understand the factors, governing their equilibrium using density functional theory along with the quantum theory of atoms in molecules, non-covalent interactions and natural bond orbital approaches. The results showed that the hydroxyl group or heteroatoms in allylic azides interact with the molecule through an electrostatic weak interaction in each pair of regioisomers. The equilibrium shifts of substituted allylic azides, compared to non-substituted allylic azides, were not attributed to the presence of specific interactions, such as hydrogen bonds. The observed equilibrium shifts stemmed mainly from the strengthening and weakening of negative hyperconjugative interactions, which were affected by the weak interaction involving the proximal substituent in each regioisomer. A good linear correlation was obtained between the hyperconjugative energies of πC[double bond, length as m-dash]C→σ*Zb interactions and the calculated percentages of the secondary azide and tertiary azide in the equilibrium mixture. Also, the effect of the aromatic ring substituent was analysed using such approaches. This study not only provides insights into the factors controlling the stabilities of the substituted allylic azides, but also settles the basis to predict the regioisomer predominance in the equilibrium mixture.

20.
Front Chem ; 8: 696, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195007

RESUMO

L-Proline is an important amino acid for the pathogenic protists belonging to Trypanosoma and Leishmania genera. In Trypanosoma cruzi, the etiological agent of Chagas disease, this amino acid is involved in fundamental biological processes such as ATP production, differentiation of the insect and intracellular stages, the host cell infection and the resistance to a variety of stresses. In this study, we explore the L-Proline uptake as a chemotherapeutic target for T. cruzi. Novel inhibitors have been proposed containing the amino acid with a linker and a variable region able to block the transporter. A series of sixteen 1,2,3-triazolyl-proline derivatives have been prepared for in vitro screening against T. cruzi epimastigotes and proline uptake assays. We successfully obtained inhibitors that interfere with the amino acid internalization, which validated our design targeting the metabolite's transport. The presented structures are one of few examples of amino acid transporter inhibitors. The unprecedent application of this strategy on the development of new chemotherapy against Chagas disease, opens a new horizon on antiparasitic drug development against parasitic diseases and other pathologies.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa