Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Mol Biol ; 208(1): 209-10, 1989 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-2671386

RESUMO

The specific DNA-binding protein FIS (factor for inversion stimulation), which stimulates site-specific DNA inversion by interaction with an enhancer sequence, was purified from an Escherichia coli strain overproducing the protein. FIS was crystallized at room temperature by microdialysis against 1.2 to 1.5 M-sodium/potassium phosphate containing 10 mM-Tris.HCl, 0.5 to 1 M-NaCl and 1 mM-NaN3 at pH 8.0 to 8.2. The crystals are stout prisms and suitable for X-ray diffraction study beyond 2.5 A resolution. They belong to the orthorhombic space group P2(1)2(1)2(1). The unit cell has dimensions a = 47.57(4) A, b = 51.13(4) A, c = 79.83(6) A and contains one FIS dimer in the asymmetric unit.


Assuntos
Proteínas de Bactérias , Proteínas de Transporte , Proteínas de Ligação a DNA , Proteínas de Escherichia coli , Cristalização , Escherichia coli , Fator Proteico para Inversão de Estimulação , Fatores Hospedeiros de Integração , Difração de Raios X
2.
J Mol Biol ; 226(1): 209-26, 1992 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-1619650

RESUMO

The factor for inversion stimulation (FIS) binds as a homodimeric molecule to a loose 15 nucleotide consensus sequence in DNA. It stimulates DNA-related processes, such as DNA inversion and excision, it activates transcription of tRNA and rRNA genes and it regulates its own synthesis. FIS crystallizes as a homodimer, with 2 x 98 amino acid residues in the asymmetric unit. The crystal structure was determined with multiple isomorphous replacement and refined to an R-factor of 19.2% against all the 12,719 X-ray data (no sigma-cutoff) extending to 2.0 A resolution. The two monomers are related by a non-crystallographic dyad axis. The structure of the dimer is modular, with the first 23 amino acid residues in molecule M1 and the first 24 in molecule M2 disordered and not "seen" in the electron density. The polypeptide folds into four alpha-helices, with alpha A, alpha A' (amino acid residues 26 to 40) and alpha B, alpha B' (49 to 69) forming the core of the FIS dimer, which is stabilized by hydrophobic forces. To the core are attached "classical" helix-turn-helix motifs, alpha C, alpha D (73 to 81 and 84 to 94) and alpha C', alpha D'. The connections linking the helices are structured by two beta-turns for alpha A/alpha B, and alpha C1 type extensions are observed at the C termini of helices alpha B, alpha C and alpha D. Helices alpha D and alpha D' contain 2 x 6 positive charges; they are separated by 24 A and can bind adjacent major grooves in B-type DNA if it is bent 90 degrees. The modular structure of FIS is also reflected by mutation experiments; mutations in the N-terminal part and alpha A interfere with FIS binding to invertases, and mutations in the helix-turn-helix motif interfere with DNA binding.


Assuntos
Proteínas de Transporte/química , Proteínas de Ligação a DNA/química , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação/genética , Proteínas de Transporte/metabolismo , DNA/genética , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fator Proteico para Inversão de Estimulação , Fatores Hospedeiros de Integração , Dados de Sequência Molecular , Conformação Proteica , Difração de Raios X
3.
J Mol Biol ; 333(3): 479-92, 2003 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-14556739

RESUMO

The induction of transcription of the galactose genes in yeast involves the galactose-dependent binding of ScGal3p (in Saccharomyces cerevisiae) or KlGal1p (in Kluyveromyces lactis) to Gal80p. This binding abrogates Gal80's inhibitory effect on the activation domain of Gal4p, which can then activate transcription. Here, we describe the isolation and characterization of new interaction mutants of K.lactis GAL1 and GAL80 using a two-hybrid screen. We present the first structural model for Gal1p to be based on the published crystal structures of other proteins belonging to the GHMP (galactokinase, homoserine kinase, mevalonate kinase and phosphomevalonate kinase) kinase family and our own X-ray diffraction data of Gal1p crystals at 3A resolution. The locations of the various mutations in the modelled Gal1p structure identify domains involved in the interaction with Gal80p and provide a structural explanation for the phenotype of constitutive GAL1 mutations.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Galactoquinase/química , Galactoquinase/metabolismo , Kluyveromyces/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Sítios de Ligação , Cristalografia por Raios X , Galactoquinase/genética , Kluyveromyces/química , Modelos Moleculares , Dados de Sequência Molecular , Família Multigênica , Mutação/genética , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Repressoras/química , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade , Supressão Genética/genética , Fatores de Transcrição/genética , Técnicas do Sistema de Duplo-Híbrido
4.
Gene ; 157(1-2): 131-4, 1995 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-7607476

RESUMO

The crystal structures of the DNA-N6-adenine-methyltransferase M.TaqI, in complexes with the cofactor S-adenosyl-L-methionine (AdoMet) and the competitive inhibitor sinefungin (Sf) show identical folding of the polypeptide chains into two domains. The N-terminal domain carries the cofactor-binding site, the C-terminal domain is thought to be implicated in sequence-specific DNA binding. Model building of the M.TaqI-DNA complex suggests that the adenine to be methylated swings out of the double helix as found previously in the cytosine-C5-MTase HhaI DNA co-crystal structure. A torsion of the methionine moiety of the cofactor is required to bring the methyl group within reach of the swung-out base and allow methyl group transfer.


Assuntos
DNA/metabolismo , Estrutura Secundária de Proteína , DNA Metiltransferases Sítio Específica (Adenina-Específica)/química , DNA Metiltransferases Sítio Específica (Adenina-Específica)/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Glicina , Metionina , Modelos Moleculares , Dados de Sequência Molecular , S-Adenosilmetionina/metabolismo
5.
Methods Mol Biol ; 914: 17-24, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22976020

RESUMO

The presented method to crystallize membrane proteins combines the advantages of the meso-phase crystallization method and the classical vapor diffusion crystallization. It allows fast screening of crystallization conditions employing automated liquid handlers suited for the 96-well crystallization format.


Assuntos
Cristalização/métodos , Proteínas de Membrana/química , Difusão , Glicerídeos/química , Transição de Fase , Rodopsina/química , Temperatura , Volatilização , Água/química
6.
Biol Chem ; 379(4-5): 389-400, 1998.
Artigo em Inglês | MEDLINE | ID: mdl-9628329

RESUMO

The adenine-specific DNA methyltransferase M.TaqI transfers a methyl group from S-adenosylmethionine to N6 of the adenine residue in the DNA sequence 5'-TCGA-3'. In the crystal structure of M.TaqI in complex with S-adenosylmethionine the enzyme is folded into two domains: An N-terminal catalytic domain, whose fold is conserved among S-adenosyl-methionine dependent methyltransferases, and a DNA recognition domain which possesses a unique fold. In the active site, two aromatic residues, Tyr 108 and Phe 196, are postulated to bind the flipped-out target DNA adenine which becomes methylated. By lowering the energy of the positively charged transition state via cationic-pi interactions, these two residues probably hold a key role in catalysis.


Assuntos
DNA Metiltransferases Sítio Específica (Adenina-Específica)/química , Adenina/metabolismo , Catálise , Cátions , DNA/metabolismo , Modelos Moleculares , Conformação Proteica , DNA Metiltransferases Sítio Específica (Adenina-Específica)/metabolismo
7.
Nature ; 391(6670): 918-21, 1998 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-9495348

RESUMO

Retinal arrestin is the essential protein for the termination of the light response in vertebrate rod outer segments. It plays an important role in quenching the light-induced enzyme cascade by its ability to bind to phosphorylated light-activated rhodopsin (P-Rh*). Arrestins are found in various G-protein-coupled amplification cascades. Here we report on the three-dimensional structure of bovine arrestin (relative molecular mass, 45,300) at 3.3 A resolution. The crystal structure comprises two domains of antiparallel beta-sheets connected through a hinge region and one short alpha-helix on the back of the amino-terminal fold. The binding region for phosphorylated light-activated rhodopsin is located at the N-terminal domain, as indicated by the docking of the photoreceptor to the three-dimensional structure of arrestin. This agrees with the interpretation of binding studies on partially digested and mutated arrestin.


Assuntos
Arrestina/química , Segmento Externo da Célula Bastonete/química , Sequência de Aminoácidos , Animais , Arrestina/isolamento & purificação , Sítios de Ligação , Bovinos , Cristalografia por Raios X , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Fosforilação , Conformação Proteica , Estrutura Secundária de Proteína
8.
Proc Natl Acad Sci U S A ; 91(23): 10957-61, 1994 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-7971991

RESUMO

The Thermus aquaticus DNA methyltransferase M.Taq I (EC 2.1.1.72) methylates N6 of adenine in the specific double-helical DNA sequence TCGA by transfer of --CH3 from the cofactor S-adenosyl-L-methionine. The x-ray crystal structure at 2.4-A resolution of this enzyme in complex with S-adenosylmethionine shows alpha/beta folding of the polypeptide into two domains of about equal size. They are arranged in the form of a C with a wide cleft suitable to accommodate the DNA substrate. The N-terminal domain is dominated by a nine-stranded beta-sheet; it contains the two conserved segments typical for N-methyltransferases which form a pocket for cofactor binding. The C-terminal domain is formed by four small beta-sheets and alpha-helices. The three-dimensional folding of M.Taq I is similar to that of the cytosine-specific Hha I methyltransferase, where the large beta-sheet in the N-terminal domain contains all conserved segments and the enzymatically functional parts, and the smaller C-terminal domain is less structured.


Assuntos
DNA Metiltransferases Sítio Específica (Adenina-Específica)/ultraestrutura , Proteínas de Bactérias/ultraestrutura , Sequência de Bases , Sítios de Ligação , Cristalografia por Raios X , DNA/química , Substâncias Macromoleculares , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes , S-Adenosilmetionina/química , Thermus/enzimologia
9.
Cell ; 86(2): 321-9, 1996 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-8706136

RESUMO

Base-excision DNA repair proteins that target alkylation damage act on a variety of seemingly dissimilar adducts, yet fail to recognize other closely related lesions. The 1.8 A crystal structure of the monofunctional DNA glycosylase AlkA (E. coli 3-methyladenine-DNA glycosylase II) reveals a large hydrophobic cleft unusually rich in aromatic residues. An Asp residue projecting into this cleft is essential for catalysis, and it governs binding specificity for mechanism-based inhibitors. We propose that AlkA recognizes electron-deficient methylated bases through pi-donor/acceptor interactions involving the electron-rich aromatic cleft. Remarkably, AlkA is similar in fold and active site location to the bifunctional glycosylase/lyase endonuclease III, suggesting the two may employ fundamentally related mechanisms for base excision.


Assuntos
Dano ao DNA/fisiologia , Reparo do DNA/fisiologia , DNA Bacteriano/genética , N-Glicosil Hidrolases/química , Alquilação , Sequência de Aminoácidos , Sequência Conservada , Cristalização , DNA Glicosilases , Proteínas de Ligação a DNA/química , Escherichia coli/química , Escherichia coli/enzimologia , Processamento de Imagem Assistida por Computador , Dados de Sequência Molecular , N-Glicosil Hidrolases/genética , Conformação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína
10.
Nature ; 349(6305): 178-80, 1991 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-1986310

RESUMO

The factor for inversion stimulation, FIS, is involved in several cellular processes, including site-specific recombination and transcriptional activation. In the reactions catalysed by the DNA invertases Gin, Hin and Cin, FIS stimulates recombination by binding to an enhancer sequence. Within the enhancer, two FIS dimers (each 2 x 98 amino acids) bind to two 15-base-pair consensus sequences and induce bending of the DNA. Current models propose that the enhancer-FIS complex organizes a specific synapse, either through direct interactions with Gin, or by modelling the substrate into a configuration suitable for recombination. Using X-ray analysis at 2.0 A resolution, we now show that FIS is composed of four alpha helices tightly intertwined to form a globular dimer with two protruding helix-turn-helix motifs. The 24 N-terminal amino acids are so poorly defined in the electron density map as to make interpretation doubtful, indicating that they might act as 'feelers' suitable for DNA or protein (invertase) recognition. We infer from model building that DNA has to bend for tight binding to FIS.


Assuntos
Proteínas de Bactérias/ultraestrutura , Proteínas de Transporte/ultraestrutura , Proteínas de Ligação a DNA/ultraestrutura , Proteínas de Escherichia coli , Sequência de Aminoácidos , Cristalografia , Escherichia coli , Fator Proteico para Inversão de Estimulação , Fatores Hospedeiros de Integração , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa