Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Toxicol Appl Pharmacol ; 303: 30-44, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27125198

RESUMO

Vesicants including sulfur mustard (SM) and nitrogen mustard (NM) are bifunctional alkylating agents that cause skin inflammation, edema and blistering. This is associated with alterations in keratinocyte growth and differentiation. Endogenous cannabinoids, including N-arachidonoylethanolamine (anandamide, AEA) and 2-arachidonoyl glycerol (2-AG), are important in regulating inflammation, keratinocyte proliferation and wound healing. Their activity is mediated by binding to cannabinoid receptors 1 and 2 (CB1 and CB2), as well as peroxisome proliferator-activated receptor alpha (PPARα). Levels of endocannabinoids are regulated by fatty acid amide hydrolase (FAAH). We found that CB1, CB2, PPARα and FAAH were all constitutively expressed in mouse epidermis and dermal appendages. Topical administration of NM or SM, at concentrations that induce tissue injury, resulted in upregulation of FAAH, CB1, CB2 and PPARα, a response that persisted throughout the wound healing process. Inhibitors of FAAH including a novel class of vanillyl alcohol carbamates were found to be highly effective in suppressing vesicant-induced inflammation in mouse skin. Taken together, these data indicate that the endocannabinoid system is important in regulating skin homeostasis and that inhibitors of FAAH may be useful as medical countermeasures against vesicants.


Assuntos
Alquilantes/toxicidade , Substâncias para a Guerra Química/toxicidade , Irritantes/toxicidade , Mecloretamina/toxicidade , Gás de Mostarda/toxicidade , Pele/efeitos dos fármacos , Amidoidrolases/antagonistas & inibidores , Amidoidrolases/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Pelados , PPAR alfa/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Pele/metabolismo
2.
Invest Ophthalmol Vis Sci ; 57(4): 1687-98, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27058125

RESUMO

PURPOSE: Sulfur mustard, nitrogen mustard (NM), and 2-chloroethyl ethyl sulfide all cause corneal injury with epithelial-stromal separation, differing only by degree. Injury can resolve in a few weeks or develop into chronic corneal problems. These vesicants induce microbullae at the epithelial-stromal junction, which is partially caused by cleavage of transmembranous hemidesmosomal collagen XVII, a component anchoring the epithelium to the stroma. ADAM17 is an enzyme involved in wound healing and is able to cleave collagen XVII. The activity of ADAM17 was inhibited in vesicant-exposed corneas by four different hydroxamates, to evaluate their therapeutic potential when applied 2 hours after exposure, thereby allowing ADAM17 to perform its early steps in wound healing. METHODS: Rabbit corneal organ cultures exposed to NM for 2 hours were washed, then incubated at 37°C for 22 hours, with or without one of the four hydroxamates (dose range, 0.3-100 nmol in 20 µL, applied four times). Corneas were analyzed by light and immunofluorescence microscopy, and ADAM17 activity assays. RESULTS: Nitrogen mustard-induced corneal injury showed significant activation of ADAM17 levels accompanying epithelial-stromal detachment. Corneas treated with hydroxamates starting 2 hours post exposure showed a dose-dependent ADAM17 activity inhibition up to concentrations of 3 nmol. Of the four hydroxamates, NDH4417 (N-octyl-N-hydroxy-2-[4-hydroxy-3-methoxyphenyl] acetamide) was most effective for inhibiting ADAM17 and retaining epithelial-stromal attachment. CONCLUSIONS: Mustard exposure leads to corneal epithelial sloughing caused, in part, by the activation of ADAM17 at the epithelial-stromal junction. Select hydroxamate compounds applied 2 hours after NM exposure mitigated epithelial-stromal separation.


Assuntos
Proteínas ADAM/metabolismo , Doenças da Córnea/metabolismo , Epitélio Corneano/metabolismo , Mecloretamina/toxicidade , Proteína ADAM17 , Animais , Western Blotting , Células Cultivadas , Doenças da Córnea/induzido quimicamente , Doenças da Córnea/patologia , Substância Própria/efeitos dos fármacos , Substância Própria/metabolismo , Substância Própria/patologia , Epitélio Corneano/efeitos dos fármacos , Epitélio Corneano/patologia , Humanos , Coelhos , Tomografia de Coerência Óptica , Fator de Necrose Tumoral alfa
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa