Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
J Pharmacol Exp Ther ; 371(2): 375-384, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31451508

RESUMO

JNJ-64179375 (JNJ-9375) is a recombinant human IgG4 monoclonal antibody engineered to mimic an IgA antibody that was identified in a patient who exhibited markedly prolonged clotting times but without spontaneous bleeding episodes over several years of follow-up. The crystal structure of the JNJ-9375 antigen-binding fragment/thrombin complex showed an almost identical binding mode to that of the patient IgA. In the current study, we characterized the in vitro and in vivo properties of JNJ-9375. Surface plasmon resonance studies demonstrated that JNJ-9375 binds to α-thrombin with high affinity and specificity (K D: 0.8 nM for human thrombin). JNJ-9375 produced concentration-dependent prolongation of in vitro clotting assays in human plasma, including thrombin time (TT), ecarin clotting time, prothrombin time, and activated partial thromboplastin time, with EC2X values of 4.4, 12.4, 172.6, and 202.7 µg/ml, respectively. JNJ-9375 inhibited thrombin-induced platelet aggregation in human plasma with an IC50 value of 52.6 nM (7.8 µg/ml) and produced concentration-dependent prolongation of reaction time tested by thromboelastography. JNJ-9375 pretreatment resulted in dose-dependent reduction in thrombus formation in the rat arteriovenous (AV) shunt model of thrombosis. Robust efficacy was observed at 0.3 mg/kg accompanied by 1.5× of TT. Bleeding was increased at 3 mg/kg in a rat tail transection bleeding model demonstrating a therapeutic index of 10× compared with 1× for apixaban in the same models. Our data suggest that thrombin exosite I inhibition is efficacious against thrombosis in a pretreatment prevention animal model. SIGNIFICANCE STATEMENT: JNJ-9375 is a novel, fully human monoclonal antibody that binds to the exosite I region of thrombin with high affinity and specificity. JNJ-9375 concentration dependently prolonged clotting times and inhibited thrombin-induced platelet aggregation in in vitro assays based on its mechanism of action. In an in vivo rat AV shunt model, JNJ-9375 prevented thrombus formation in a dose-dependent fashion while demonstrating reduced bleeding risk. The present study demonstrated the antithrombotic effects of inhibiting the exosite I region of thrombin when given in a prevention mode in preclinical animal models.


Assuntos
Anticorpos Monoclonais/farmacologia , Antitrombinas/farmacologia , Imunoglobulina G/farmacologia , Inibidores da Agregação Plaquetária/farmacologia , Proteínas Recombinantes/farmacologia , Animais , Anticorpos Monoclonais/metabolismo , Antitrombinas/metabolismo , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Relação Dose-Resposta a Droga , Humanos , Imunoglobulina G/metabolismo , Macaca fascicularis , Masculino , Camundongos , Inibidores da Agregação Plaquetária/metabolismo , Ligação Proteica/fisiologia , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/metabolismo
2.
J Biol Chem ; 290(41): 24689-704, 2015 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-26260789

RESUMO

The efficacy of engaging multiple drug targets using bispecific antibodies (BsAbs) is affected by the relative cell-surface protein levels of the respective targets. In this work, the receptor density values were correlated to the in vitro activity of a BsAb (JNJ-61186372) targeting epidermal growth factor receptor (EGFR) and hepatocyte growth factor receptor (c-MET). Simultaneous binding of the BsAb to both receptors was confirmed in vitro. By using controlled Fab-arm exchange, a set of BsAbs targeting EGFR and c-MET was generated to establish an accurate receptor quantitation of a panel of lung and gastric cancer cell lines expressing heterogeneous levels of EGFR and c-MET. EGFR and c-MET receptor density levels were correlated to the respective gene expression levels as well as to the respective receptor phosphorylation inhibition values. We observed a bias in BsAb binding toward the more highly expressed of the two receptors, EGFR or c-MET, which resulted in the enhanced in vitro potency of JNJ-61186372 against the less highly expressed target. On the basis of these observations, we propose an avidity model of how JNJ-61186372 engages EGFR and c-MET with potentially broad implications for bispecific drug efficacy and design.


Assuntos
Anticorpos Biespecíficos/imunologia , Receptores ErbB/imunologia , Receptores ErbB/metabolismo , Regulação da Expressão Gênica , Terapia de Alvo Molecular , Proteínas Proto-Oncogênicas c-met/imunologia , Proteínas Proto-Oncogênicas c-met/metabolismo , Antígenos de Superfície/química , Antígenos de Superfície/genética , Antígenos de Superfície/imunologia , Antígenos de Superfície/metabolismo , Linhagem Celular Tumoral , Receptores ErbB/química , Receptores ErbB/genética , Humanos , Fragmentos Fab das Imunoglobulinas/imunologia , Modelos Moleculares , Mutação , Fosforilação , Multimerização Proteica , Estrutura Quaternária de Proteína , Proteínas Proto-Oncogênicas c-met/química , Proteínas Proto-Oncogênicas c-met/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
3.
Proteins ; 84(4): 427-34, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26800003

RESUMO

Microtubule-associated protein tau becomes abnormally phosphorylated in Alzheimer's disease and other tauopathies and forms aggregates of paired helical filaments (PHF-tau). AT8 is a PHF-tau-specific monoclonal antibody that is a commonly used marker of neuropathology because of its recognition of abnormally phosphorylated tau. Previous reports described the AT8 epitope to include pS202/pT205. Our studies support and extend previous findings by also identifying pS208 as part of the binding epitope. We characterized the phosphoepitope of AT8 through both peptide binding studies and costructures with phosphopeptides. From the cocrystal structure of AT8 Fab with the diphosphorylated (pS202/pT205) peptide, it appeared that an additional phosphorylation at S208 would also be accommodated by AT8. Phosphopeptide binding studies showed that AT8 bound to the triply phosphorylated tau peptide (pS202/pT205/pS208) 30-fold stronger than to the pS202/pT205 peptide, supporting the role of pS208 in AT8 recognition. We also show that the binding kinetics of the triply phosphorylated peptide pS202/pT205/pS208 was remarkably similar to that of PHF-tau. The costructure of AT8 Fab with a pS202/pT205/pS208 peptide shows that the interaction interface involves all six CDRs and tau residues 202-209. All three phosphorylation sites are recognized by AT8, with pT205 acting as the anchor. Crystallization of the Fab/peptide complex under acidic conditions shows that CDR-L2 is prone to unfolding and precludes peptide binding, and may suggest a general instability in the antibody.


Assuntos
Anticorpos Monoclonais/química , Epitopos/química , Fragmentos Fab das Imunoglobulinas/química , Fosfopeptídeos/química , Proteínas tau/química , Sequência de Aminoácidos , Anticorpos Monoclonais/biossíntese , Sítios de Ligação de Anticorpos , Cristalografia por Raios X , Mapeamento de Epitopos , Epitopos/metabolismo , Expressão Gênica , Células HEK293 , Humanos , Fragmentos Fab das Imunoglobulinas/biossíntese , Modelos Moleculares , Fosfopeptídeos/síntese química , Fosforilação , Ligação Proteica , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serina/química , Serina/metabolismo , Treonina/química , Treonina/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
4.
Methods ; 65(1): 114-26, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23872058

RESUMO

The Fc variant of IgG2, designated as IgG2σ, was engineered with V234A/G237A /P238S/H268A/V309L/A330S/P331S substitutions to eliminate affinity for Fcγ receptors and C1q complement protein and consequently, immune effector functions. IgG2σ was compared to other previously well-characterized Fc 'muted' variants, including aglycosylated IgG1, IgG2m4 (H268Q/V309L/A330S/P331S, changes to IgG4), and IgG4 ProAlaAla (S228P/L234A/L235A) in its capacity to bind FcγRs and activate various immune-stimulatory responses. In contrast to the previously characterized muted Fc variants, which retain selective FcγR binding and effector functions, IgG2σ shows no detectable binding to the Fcγ receptors in affinity and avidity measurements, nor any detectable antibody-dependent cytotoxicity, phagocytosis, complement activity, or Fc-mediated cytokine release. Moreover, IgG2σ shows minimal immunogenic potential by T-cell epitope analysis. The circulating half-life of IgG2σ in monkeys is extended relative to IgG1 and IgG2, in spite of similar in vitro binding to recombinant FcRn. The three-dimensional structure of the Fc, needed for assessing the basis for the absence of effector function, was compared with that of IgG2 revealing a number of conformational differences near the hinge region of the CH2 domain that result from the amino acid substitutions. Modeling reveals that at least one of the key interactions with FcγRs is disrupted by a conformational change that reorients P329 to a position that prevents it from interacting with conserved W90 and W113 residues of the FcγRs. Inspection of the structure also indicated significant changes to the conformations of D270 and P329 in the CH2 domain that could negatively impact C1q binding. Thus, structural perturbations of the Fc provide a rationale for the loss of function. In toto, these properties of IgG2σ suggest that it is a superior alternative to previously described IgG variants of minimal effector function, for future therapeutic applications of non-immunostimulatory mAb and Fc-fusion platforms.


Assuntos
Fragmentos Fc das Imunoglobulinas/química , Imunoglobulina G/química , Fatores Imunológicos/química , Substituição de Aminoácidos , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/farmacologia , Afinidade de Anticorpos , Citotoxicidade Celular Dependente de Anticorpos , Sítios de Ligação , Cristalografia por Raios X , Citocinas/metabolismo , Células HEK293 , Meia-Vida , Humanos , Fragmentos Fc das Imunoglobulinas/genética , Fragmentos Fc das Imunoglobulinas/farmacologia , Imunoglobulina G/genética , Imunoglobulina G/farmacologia , Fatores Imunológicos/genética , Fatores Imunológicos/farmacologia , Macaca fascicularis , Masculino , Modelos Moleculares , Mutagênese Sítio-Dirigida , Ligação Proteica , Estrutura Secundária de Proteína , Receptor ErbB-2/imunologia , Receptores de IgG/química
5.
Cell Host Microbe ; 31(5): 751-765.e11, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37098341

RESUMO

Treating and preventing infections by antimicrobial-resistant bacterial pathogens is a worldwide problem. Pathogens such as Staphylococcus aureus produce an array of virulence determinants, making it difficult to identify single targets for the development of vaccines or monoclonal therapies. We described a human-derived anti-S. aureus monoclonal antibody (mAb)-centyrin fusion protein ("mAbtyrin") that simultaneously targets multiple bacterial adhesins, resists proteolysis by bacterial protease GluV8, avoids Fc engagement by S. aureus IgG-binding proteins SpA and Sbi, and neutralizes pore-forming leukocidins via fusion with anti-toxin centyrins, while maintaining Fc- and complement-mediated functions. Compared with the parental mAb, mAbtyrin protected human phagocytes and boosted phagocyte-mediated killing. The mAbtyrin also reduced pathology, reduced bacterial burden, and protected from different types of infections in preclinical animal models. Finally, mAbtyrin synergized with vancomycin, enhancing pathogen clearance in an animal model of bacteremia. Altogether, these data establish the potential of multivalent mAbs for treating and preventing S. aureus diseases.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Animais , Humanos , Staphylococcus aureus , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/prevenção & controle , Infecções Estafilocócicas/microbiologia , Anticorpos Monoclonais/uso terapêutico , Fagócitos/metabolismo , Leucocidinas/metabolismo , Leucocidinas/uso terapêutico
6.
MAbs ; 15(1): 2195517, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37074212

RESUMO

Single-chain fragment variable (scFv) domains play an important role in antibody-based therapeutic modalities, such as bispecifics, multispecifics and chimeric antigen receptor T cells or natural killer cells. However, scFv domains exhibit lower stability and increased risk of aggregation due to transient dissociation ("breathing") and inter-molecular reassociation of the two domains (VL and VH). We designed a novel strategy, referred to as stapling, that introduces two disulfide bonds between the scFv linker and the two variable domains to minimize scFv breathing. We named the resulting molecules stapled scFv (spFv). Stapling increased thermal stability (Tm) by an average of 10°C. In multiple scFv/spFv multispecifics, the spFv molecules display significantly improved stability, minimal aggregation and superior product quality. These spFv multispecifics retain binding affinity and functionality. Our stapling design was compatible with all antibody variable regions we evaluated and may be widely applicable to stabilize scFv molecules for designing biotherapeutics with superior biophysical properties.


Assuntos
Anticorpos , Região Variável de Imunoglobulina , Região Variável de Imunoglobulina/química , Fragmentos de Imunoglobulinas
7.
J Mol Recognit ; 25(3): 184-91, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22407982

RESUMO

Interleukin 13 (IL-13) is a pleiotropic cytokine secreted by activated T cells. Both IL-13 and its polymorphic variant (IL-13-R110Q) have been shown to be associated with multiple diseases such as asthma and allergy. Two IL-13 receptors have been identified, IL-13R alpha-1 receptor (IL-13Rα1) and IL-13R alpha-2 receptor (IL-13Rα2). It has been well established that IL-13 binds to IL-13Rα1 alone with low nM affinity while binding to the IL-13Rα1/IL-4R receptor complex is significantly tighter (pM). The affinity between IL-13 and IL-13Rα2, however, remains elusive. Several values have been reported in the literature varying from 20 pM to 2.5 nM. The affinities previously reported were obtained using surface plasmon resonance (SPR) or Scatchard analysis of (125) I-IL-13 binding data. This report presents the results for the kinetics and equilibrium binding analysis studies performed using label-free kinetic exclusion assay (KEA) for the interaction of human IL-13 and IL-13Rα2. KEA equilibrium analysis showed that the affinities of IL-13Rα2 are 107 and 56 pM for IL-13 and its variant (IL-13-R110Q), respectively. KEA kinetic analysis showed that a tight and very stable complex is formed between IL-13Rα2 and IL-13, as shown by calculated dissociation rate constants slower than 5 × 10(-5) per second. Kinetic analysis also showed significant differences in the kinetic behavior of wild type (wt) versus IL-13-R110Q. IL-13-R110Q not only associates to IL-13Rα2 slower than wt human IL-13 (wt-IL-13), as previously reported, but IL-13-R110Q also dissociates slower than wt-IL-13. These results show that IL-13Rα2 is a high affinity receptor and provide a new perspective on kinetic behavior that could have significant implications in the understanding of the role of IL-13-R110Q in the disease state.


Assuntos
Subunidade alfa2 de Receptor de Interleucina-13/química , Interleucina-13/química , Substituição de Aminoácidos , Humanos , Proteínas Imobilizadas/química , Interleucina-13/genética , Subunidade alfa2 de Receptor de Interleucina-13/isolamento & purificação , Cinética , Ligação Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/isolamento & purificação , Ressonância de Plasmônio de Superfície
8.
J Mol Recognit ; 25(3): 136-46, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22407977

RESUMO

In the human adaptation and optimization of a mouse anti-human respiratory syncytial virus neutralizing antibody, affinity assessment was crucial to distinguish among potential candidates and to evaluate whether this correlated with function in vitro and in vivo. This affinity assessment was complicated by the trimeric nature of the antigen target, respiratory syncytial virus F (RSV-F) glycoprotein. In the initial affinity screen, surface plasmon resonance was used to determine the intrinsic binding affinities of anti-RSV-F Fab and immunoglobulin G (IgG) to the extracellular domain of RSV-F. This assessment required minimal biotinylation of the RSV-F protein and design of a capture strategy to minimize avidity effects. Approximately 30 Fabs were selected from three optimization phage display libraries on the basis of an initial ELISA screen. Surface plasmon resonance analysis demonstrated the success of optimization with some candidates from the screened libraries having low picomolar dissociation constants, more than 700-fold tighter than the parental monoclonal antibody (B21M). The affinities of these antibodies were further evaluated by a kinetic exclusion assay, a solution binding technology. One IgG (monoclonal antibody 029) displayed a low picomolar K(D) comparable with that of motavizumab, an RSV antibody in clinical study. Kinetic exclusion assay showed that two other of the matured IgGs (011 and 019) had sub-picomolar dissociation constants that could not be resolved further. We discuss the relevance of these interaction analysis results in the light of recently published data on the mechanism of F-driven viral fusion during paramyxoviral infection and 101F epitope conservation revealed from the recent crystal structure of RSV-F in the post-fusion state.


Assuntos
Anticorpos Monoclonais Murinos/química , Anticorpos Neutralizantes/química , Afinidade de Anticorpos , Vírus Sincicial Respiratório Humano/imunologia , Proteínas Virais de Fusão/imunologia , Animais , Biotinilação , Humanos , Concentração de Íons de Hidrogênio , Proteínas Imobilizadas/química , Proteínas Imobilizadas/imunologia , Fragmentos Fab das Imunoglobulinas/química , Cinética , Camundongos , Biblioteca de Peptídeos , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Proteínas Virais de Fusão/química
9.
Med ; 3(12): 860-882.e15, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36257298

RESUMO

BACKGROUND: The near impermeability of the blood-brain barrier (BBB) and the unique neuroimmune environment of the CNS prevents the effective use of antibodies in neurological diseases. Delivery of biotherapeutics to the brain can be enabled through receptor-mediated transcytosis via proteins such as the transferrin receptor, although limitations such as the ability to use Fc-mediated effector function to clear pathogenic targets can introduce safety liabilities. Hence, novel delivery approaches with alternative clearance mechanisms are warranted. METHODS: Binders that optimized transport across the BBB, known as transcytosis-enabling modules (TEMs), were identified using a combination of antibody discovery techniques and pharmacokinetic analyses. Functional activity of TEMs were subsequently evaluated by imaging for the ability of myeloid cells to phagocytose target proteins and cells. FINDINGS: We demonstrated significantly enhanced brain exposure of therapeutic antibodies using optimal transferrin receptor or CD98 TEMs. We found that these modules also mediated efficient clearance of tau aggregates and HER2+ tumor cells via a non-classical phagocytosis mechanism through direct engagement of myeloid cells. This mode of clearance potentially avoids the known drawbacks of FcγR-mediated antibody mechanisms in the brain such as the neurotoxic release of proinflammatory cytokines and immune cell exhaustion. CONCLUSIONS: Our study reports a new brain delivery platform that harnesses receptor-mediated transcytosis to maximize brain uptake and uses a non-classical phagocytosis mechanism to efficiently clear pathologic proteins and cells. We believe these findings will transform therapeutic approaches to treat CNS diseases. FUNDING: This research was funded by Janssen, Pharmaceutical Companies of Johnson & Johnson.


Assuntos
Barreira Hematoencefálica , Transcitose , Barreira Hematoencefálica/metabolismo , Transcitose/fisiologia , Receptores da Transferrina , Transporte Biológico/fisiologia , Anticorpos
10.
Proc Natl Acad Sci U S A ; 105(25): 8513-8, 2008 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-18559857

RESUMO

Collagens are integral structural proteins in animal tissues and play key functional roles in cellular modulation. We sought to discover collagen model peptides (CMPs) that would form triple helices and self-assemble into supramolecular fibrils exhibiting collagen-like biological activity without preorganizing the peptide chains by covalent linkages. This challenging objective was accomplished by placing aromatic groups on the ends of a representative 30-mer CMP, (GPO)(10), as with l-phenylalanine and l-pentafluorophenylalanine in 32-mer 1a. Computational studies on homologous 29-mers 1a'-d' (one less GPO), as pairs of triple helices interacting head-to-tail, yielded stabilization energies in the order 1a' > 1b' > 1c' > 1d', supporting the hypothesis that hydrophobic aromatic groups can drive CMP self-assembly. Peptides 1a-d were studied comparatively relative to structural properties and ability to stimulate human platelets. Although each 32-mer formed stable triple helices (CD) spectroscopy, only 1a and 1b self-assembled into micrometer-scale fibrils. Light microscopy images for 1a depicted long collagen-like fibrils, whereas images for 1d did not. Atomic force microscopy topographical images indicated that 1a and 1b self-organize into microfibrillar species, whereas 1c and 1d do not. Peptides 1a and 1b induced the aggregation of human blood platelets with a potency similar to type I collagen, whereas 1c was much less effective, and 1d was inactive (EC(50) potency: 1a/1b >> 1c > 1d). Thus, 1a and 1b spontaneously self-assemble into thrombogenic collagen-mimetic materials because of hydrophobic aromatic interactions provided by the special end-groups. These findings have important implications for the design of biofunctional CMPs.


Assuntos
Colágenos Fibrilares/química , Peptídeos/química , Trombina/metabolismo , Biomimética , Dicroísmo Circular , Colágenos Fibrilares/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Microscopia de Força Atômica , Modelos Moleculares , Peptídeos/síntese química , Trombina/química
11.
Mol Cell Biol ; 27(9): 3530-41, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17325029

RESUMO

The cyclin-dependent kinase inhibitor p21(Cip1) regulates multiple cellular functions and protects cells from genotoxic and other cellular stresses. Activation of apoptosis signal-regulating kinase 1 (ASK1) induced by inhibition of mTOR signaling leads to sustained phospho-c-Jun that is suppressed in cells with functional p53 or by forced expression of p21(Cip1). Here we show that small deletions of p21(Cip1) around S98 abrogate its association with ASK1 but do not affect binding to Cdk1, hence distinguishing between the cell cycle-regulating functions of p21(Cip1) and its ability to suppress activation of the ASK1/Jun N-terminal protein kinase (JNK) pathway. p21(Cip1) is phosphorylated in vitro by both ASK1 and JNK1 at S98. In vivo phosphorylation of p21(Cip1), predominantly carried out by ASK1, is associated with binding to ASK1 and inactivation of ASK1 kinase function. Binding of p21(Cip1) to ASK1 requires ASK1 kinase function and may involve phosphorylation of S98.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/metabolismo , MAP Quinase Quinase Quinase 5/metabolismo , Fosfosserina/metabolismo , Antracenos/farmacologia , Linhagem Celular , Inibidor de Quinase Dependente de Ciclina p21/genética , Ativação Enzimática , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , MAP Quinase Quinase Quinase 5/genética , Mutação/genética , Sinais de Localização Nuclear , Ligação Proteica , Inibidores de Proteínas Quinases/farmacologia , Sirolimo/farmacologia
12.
J Alzheimers Dis ; 77(4): 1397-1416, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32894244

RESUMO

BACKGROUND: As a consequence of the discovery of an extracellular component responsible for the progression of tau pathology, tau immunotherapy is being extensively explored in both preclinical and clinical studies as a disease modifying strategy for the treatment of Alzheimer's disease. OBJECTIVE: Describe the characteristics of the anti-phospho (T212/T217) tau selective antibody PT3 and its humanized variant hPT3. METHODS: By performing different immunization campaigns, a large collection of antibodies has been generated and prioritized. In depth, in vitro characterization using surface plasmon resonance, phospho-epitope mapping, and X-ray crystallography experiments were performed. Further characterization involved immunohistochemical staining on mouse- and human postmortem tissue and neutralization of tau seeding by immunodepletion assays. RESULTS AND CONCLUSION: Various in vitro experiments demonstrated a high intrinsic affinity for PT3 and hPT3 for AD brain-derived paired helical filaments but also to non-aggregated phospho (T212/T217) tau. Further functional analyses in cellular and in vivo models of tau seeding demonstrated almost complete depletion of tau seeds in an AD brain homogenate. Ongoing trials will provide the clinical evaluation of the tau spreading hypothesis in Alzheimer's disease.


Assuntos
Anticorpos Monoclonais Humanizados/metabolismo , Anticorpos Monoclonais/metabolismo , Descoberta de Drogas/métodos , Proteínas tau/metabolismo , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais Humanizados/química , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Estrutura Terciária de Proteína , Proteínas tau/química
13.
Nat Struct Mol Biol ; 11(4): 358-64, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15024385

RESUMO

p27 controls cell proliferation by binding and regulating nuclear cyclin-dependent kinases (CDKs). In addition, p27 interacts with other nuclear and cytoplasmic targets and has diverse biological functions. We seek to understand how the structural and dynamic properties of p27 mediate its several functions. We show that, despite showing disorder before binding its targets, p27 has nascent secondary structure that may have a function in molecular recognition. Binding to Cdk2-cyclin A is accompanied by p27 folding, and kinetic data suggest a sequential mechanism that is initiated by binding to cyclin A. p27 regulates CDK-cyclin complexes involved directly in cell cycle control and does not interact with other closely related CDKs. We show that p27-cyclin interactions are an important determinant of this specificity and propose that the homologous cell cycle regulators p21 and p57 function by a similar sequential, folding-on-binding mechanism.


Assuntos
Quinases relacionadas a CDC2 e CDC28/metabolismo , Ciclinas/química , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/metabolismo , Proteínas Musculares , Sequência de Aminoácidos , Quinases relacionadas a CDC2 e CDC28/química , Sequência Conservada , Quinase 2 Dependente de Ciclina , Ciclinas/metabolismo , Humanos , Cinética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Dobramento de Proteína , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Soluções , Termodinâmica
14.
Anal Biochem ; 382(1): 66-8, 2008 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-18675772

RESUMO

Monoclonal antibodies are a major subclass of biopharmaceuticals. They are structurally different from other biopharmaceuticals in size and quaternary structure. Here we demonstrate a correlation between chemical stability of antibodies and thermal stability. We show that overall thermal protein stability can be predicted based on the measurement of free sulfhydryl (-SH) content on applying mildly denaturing conditions. We propose that this method can be adapted to a high-throughput screening format and used either as an absolute measure of thermal stability or for ranking a panel of possible variants.


Assuntos
Anticorpos Monoclonais/química , Compostos de Sulfidrila/análise , Compostos de Sulfidrila/química , Animais , Anticorpos Monoclonais/metabolismo , Calibragem , Bovinos , Fluorescência , Humanos , Desnaturação Proteica , Temperatura de Transição
15.
Immunol Lett ; 197: 1-8, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29476755

RESUMO

In therapeutic antibody discovery and early development, mice and cynomolgus monkey are used as animal models to assess toxicity, efficacy and other properties of candidate molecules. As more candidate antibodies are based on human immunoglobulin (IgG) subclasses, many strategies are pursued to simulate the human system in the test animal. However, translation rate from a successful preclinical trial to an approved drug is extremely low. This may partly be due to differences in interaction of human IgG based candidate molecules to endogenous Fcγ receptors of model animals in comparison to those of human Fcγ receptors. In this study, we compare binding characteristics of human IgG subclasses commonly used in drug development (IgG1, IgG2, IgG4) and their respective Fc silent versions (IgG1σ, IgG2σ, IgG4 PAA) to human, mouse, and cynomolgus monkey Fcγ receptors. To control interactions between Fab and Fc domains, the test IgGs all have the same variable region sequences. We found distinct variations of interaction of human IgG subclasses to model animal Fcγ receptors in comparison to their human counterparts. Particularly, cynomolgus monkey Fcγ receptors showed consistently tighter binding to human IgGs than human Fcγ receptors. Moreover, the presumably Fc silent human IgG4 PAA framework bound to cynomolgus monkey FcγRI with nanomolar affinity while only very weak binding was observed for the human FcγRI. Our results highlighted the need for a thorough in vitro affinity characterization of candidate IgGs against model animal Fcγ receptors and careful design of preclinical studies.


Assuntos
Fragmentos Fc das Imunoglobulinas/metabolismo , Imunoglobulina G/metabolismo , Isotipos de Imunoglobulinas/metabolismo , Imunoterapia/métodos , Receptores de IgG/metabolismo , Animais , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Células HEK293 , Humanos , Imunoglobulina G/genética , Imunoglobulina G/uso terapêutico , Região Variável de Imunoglobulina/genética , Macaca fascicularis , Camundongos , Ligação Proteica , Pesquisa Translacional Biomédica
16.
Mol Metab ; 10: 87-99, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29453154

RESUMO

OBJECTIVE: Insulin resistance is a key feature of Type 2 Diabetes (T2D), and improving insulin sensitivity is important for disease management. Allosteric modulation of the insulin receptor (IR) with monoclonal antibodies (mAbs) can enhance insulin sensitivity and restore glycemic control in animal models of T2D. METHODS: A novel human mAb, IRAB-A, was identified by phage screening using competition binding and surface plasmon resonance assays with the IR extracellular domain. Cell based assays demonstrated agonist and sensitizer effects of IRAB-A on IR and Akt phosphorylation, as well as glucose uptake. Lean and diet-induced obese mice were used to characterize single-dose in vivo pharmacological effects of IRAB-A; multiple-dose IRAB-A effects were tested in obese mice. RESULTS: In vitro studies indicate that IRAB-A exhibits sensitizer and agonist properties distinct from insulin on the IR and is translated to downstream signaling and function; IRAB-A bound specifically and allosterically to the IR and stabilized insulin binding. A single dose of IRAB-A given to lean mice rapidly reduced fed blood glucose for approximately 2 weeks, with concomitant reduced insulin levels suggesting improved insulin sensitivity. Phosphorylated IR (pIR) from skeletal muscle and liver were increased by IRAB-A; however, phosphorylated Akt (pAkt) levels were only elevated in skeletal muscle and not liver vs. control; immunochemistry analysis (IHC) confirmed the long-lived persistence of IRAB-A in skeletal muscle and liver. Studies in diet-induced obese (DIO) mice with IRAB-A reduced fed blood glucose and insulinemia yet impaired glucose tolerance and led to protracted insulinemia during a meal challenge. CONCLUSION: Collectively, the data suggest IRAB-A acts allosterically on the insulin receptor acting non-competitively with insulin to both activate the receptor and enhance insulin signaling. While IRAB-A produced a decrease in blood glucose in lean mice, the data in DIO mice indicated an exacerbation of insulin resistance; these data were unexpected and suggested the interplay of complex unknown pharmacology. Taken together, this work suggests that IRAB-A may be an important tool to explore insulin receptor signaling and pharmacology.


Assuntos
Sítio Alostérico , Anticorpos Monoclonais/farmacologia , Hipoglicemiantes/farmacologia , Receptor de Insulina/agonistas , Células 3T3 , Regulação Alostérica , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Glicemia/metabolismo , Linhagem Celular Tumoral , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/imunologia , Insulina/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Receptor de Insulina/química , Receptor de Insulina/imunologia , Transdução de Sinais
17.
J Alzheimers Dis ; 65(1): 265-281, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30040731

RESUMO

The tau spreading hypothesis provides rationale for passive immunization with an anti-tau monoclonal antibody to block seeding by extracellular tau aggregates as a disease-modifying strategy for the treatment of Alzheimer's disease (AD) and potentially other tauopathies. As the biochemical and biophysical properties of the tau species responsible for the spatio-temporal sequences of seeding events are poorly defined, it is not yet clear which epitope is preferred for obtaining optimal therapeutic efficacy. Our internal tau antibody collection has been generated by immunizations with different tau species: aggregated- and non-aggregated tau and human postmortem AD brain-derived tau fibrils. In this communication, we describe and characterize a set of these anti-tau antibodies for their biochemical and biophysical properties, including binding, tissue staining by immunohistochemistry, and epitope. The antibodies bound to different domains of the tau protein and some were demonstrated to be isoform-selective (PT18 and hTau56) or phospho-selective (PT84). Evaluation of the antibodies in cellular- and in vivo seeding assays revealed clear differences in maximal efficacy. Limited proteolysis experiments support the hypothesis that some epitopes are more exposed than others in the tau seeds. Moreover, antibody efficacy seems to depend on the structural properties of fibrils purified from tau Tg mice- and postmortem human AD brain.


Assuntos
Doença de Alzheimer/patologia , Anticorpos Monoclonais/metabolismo , Encéfalo/metabolismo , Proteínas tau/imunologia , Animais , Mapeamento de Epitopos , Feminino , Células HEK293 , Humanos , Imunização Passiva , Masculino , Camundongos , Camundongos Knockout , Mutação/genética , Ressonância de Plasmônio de Superfície , Proteínas tau/deficiência , Proteínas tau/genética
18.
Biochim Biophys Acta ; 1764(2): 182-9, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16458085

RESUMO

The cyclin-dependent kinase inhibitor (CKI) p27Kip1 plays a critical role in cell cycle regulation by binding and inhibiting (or activating) various cyclin-dependent kinase (Cdk)/cyclin complexes. Thermal denaturation monitored by circular dichroism (CD) and isothermal titration calorimetry (ITC) were used to determine the relative stabilities and affinities of p27-KID (p27 kinase inhibitory domain) complexes with activated Cdk2 (phosphorylated at Thr160; P-Cdk2) and non-activated forms of Cdk2 and/or cyclin A. Phosphorylation of residue Thr160 only slightly increases the thermal stability of Cdk2, and its binary complexes with cyclin A and p27-KID. The p27-KID/P-Cdk2/cyclin A or p27-KID/Cdk2/cyclin A ternary complexes exhibited significantly higher thermal stabilities compared to the binary complexes (P-Cdk2/cyclin A or Cdk2/cyclin A). Differences in T(m) values between the binary and ternary complexes with P-Cdk2 and Cdk2 were +25.9 and +20.4 degrees C, respectively. These results indicate that the ternary complex with phosphorylated Cdk2 is stabilized to a larger extent than the non-phosphorylated complex. The free energy of association (deltaG(A)) for formation of the two ternary complexes was more favorable than for the binary complexes, indicating that a significantly smaller population of free components existed when all three components were present. These data indicate that p27-KID, which is intrinsically disordered in solution, acts as a thermodynamic tether when bound within the ternary complexes. It is proposed that thermodynamic tethering may be a general phenomena associated with intrinsically unstructured proteins (IUPs) which often function by binding to multiple partners in multi-protein assemblies.


Assuntos
Quinase 2 Dependente de Ciclina/química , Inibidor de Quinase Dependente de Ciclina p27/química , Termodinâmica , Ativação Enzimática , Humanos , Fosforilação , Conformação Proteica , Desnaturação Proteica , Temperatura , Treonina/química
19.
Hum Antibodies ; 16(3-4): 117-25, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18334747

RESUMO

The human CCL2 chemokine is implicated in many chronic inflammatory conditions. In the mouse, there are two CCL2 homologues, CCL2 (MCP-1/JE) and CCL12 (MCP-5). Both are potent monocyte chemoattractants and bind to and activate the same receptor, CCR2. The overlapping activities of these chemokines complicate the design of mouse model studies that are intended to mimic human disease. To study the roles of CCL2 and CCL12, we generated neutralizing antibodies specific to each chemokine. Consistent with binding and affinity analyses, the antibodies specifically inhibited CCL2- or CCL12- mediated Ca(2+) mobilization in THP-1 cells. When tested in nude mice bearing human PANC-1 pancreatic tumor cells in Matrigel plugs, CCL2 and CCL12 antibodies potently inhibited tumor angiogenesis, indicating that both CCL2 and CCL12 may contribute to tumor angiogenesis.


Assuntos
Anticorpos/imunologia , Quimiocina CCL2/imunologia , Proteínas Quimioatraentes de Monócitos/imunologia , Sequência de Aminoácidos , Animais , Cálcio/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Camundongos , Camundongos Nus , Dados de Sequência Molecular , Neovascularização Patológica/prevenção & controle , Testes de Neutralização
20.
Diabetes ; 66(1): 206-217, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27797911

RESUMO

A hallmark of type 2 diabetes is impaired insulin receptor (IR) signaling that results in dysregulation of glucose homeostasis. Understanding the molecular origins and progression of diabetes and developing therapeutics depend on experimental models of hyperglycemia, hyperinsulinemia, and insulin resistance. We present a novel monoclonal antibody, IRAB-B, that is a specific, potent IR antagonist that creates rapid and long-lasting insulin resistance. IRAB-B binds to the IR with nanomolar affinity and in the presence of insulin efficiently blocks receptor phosphorylation within minutes and is sustained for at least 3 days in vitro. We further confirm that IRAB-B antagonizes downstream signaling and metabolic function. In mice, a single dose of IRAB-B induces rapid onset of hyperglycemia within 6 h, and severe hyperglycemia persists for 2 weeks. IRAB-B hyperglycemia is normalized in mice treated with exendin-4, suggesting that this model can be effectively treated with a GLP-1 receptor agonist. Finally, a comparison of IRAB-B with the IR antagonist S961 shows distinct antagonism in vitro and in vivo. IRAB-B appears to be a powerful tool to generate both acute and chronic insulin resistance in mammalian models to elucidate diabetic pathogenesis and evaluate therapeutics.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Resistência à Insulina/fisiologia , Receptor de Insulina/metabolismo , Animais , Western Blotting , Linhagem Celular , Diabetes Mellitus Tipo 2 , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/antagonistas & inibidores , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Humanos , Hiperglicemia/tratamento farmacológico , Hiperglicemia/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Peptídeos/farmacologia , Fosforilação , Ligação Proteica , Receptor de Insulina/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa