Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276587

RESUMO

The coordination chemistry of 2-pyridyl ketoximes continues to attract the interest of many inorganic chemistry groups around the world for a variety of reasons. Cadmium(II) complexes of such ligands have provided models of solvent extraction of this toxic metal ion from aqueous environments using 2-pyridyl ketoxime extractants. Di-2-pyridyl ketone oxime (dpkoxH) is a unique member of this family of ligands because its substituent on the oxime carbon bears another potential donor site, i.e., a second 2-pyridyl group. The goal of this study was to investigate the reactions of cadmium(II) halides and dpkoxH in order to assess the structural role (if any) of the halogeno ligand and compare the products with their zinc(II) analogs. The synthetic studies provided access to complexes {[CdCl2(dpkoxH)∙2H2O]}n (1∙2H2O), {[CdBr2(dpkoxH)]}n (2) and {[CdI2(dpkoxH)]}n (3) in 50-60% yields. The structures of the complexes were determined by single-crystal X-ray crystallography. The compounds consist of structurally similar 1D zigzag chains, but only 2 and 3 are strictly isomorphous. Neighboring CdII atoms are alternately doubly bridged by halogeno and dpkoxH ligands, the latter adopting the η1:η1:η1:µ (or 2.0111 using Harris notation) coordination mode. A terminal halogeno group completes distorted octahedral coordination at each metal ion, and the coordination sphere of the CdII atoms is {CdII(η1 - X)(µ - X)2(Npyridyl)2(Noxime)} (X = Cl, Br, I). The trans-donor-atom pairs in 1∙2H2O are Clterminal/Noxime and two Clbridging/Npyridyl; on the contrary, these donor-atom pairs are Xterminal/Npyridyl, Xbridging/Noxime, and Xbridging/Npyridyl (X = Br, I). There are intrachain H-bonding interactions in the structures. The packing of the chains in 1∙2H2O is achieved via π-π stacking interactions, while the 3D architecture of the isomorphous 2 and 3 is built via C-H∙∙∙Cg (Cg is the centroid of one pyridyl ring) and π-π overlaps. The molecular structures of 1∙2H2O and 2 are different compared with their [ZnX2(dpkoxH)] (X = Cl, Br) analogs. The polymeric compounds were characterized by IR and Raman spectroscopies in the solid state, and the data were interpreted in terms of the known molecular structures. The solid-state structures of the complexes are not retained in DMSO, as proven via NMR (1H, 13C, and 113Cd NMR) spectroscopy and molar conductivity data. The complexes completely release the coordinated dpkoxH molecule, and the dominant species in solution seem to be [Cd(DMSO)6]2+ in the case of the chloro and bromo complexes and [CdI2(DMSO)4].

2.
Molecules ; 27(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35268720

RESUMO

The present work describes the reactions of CdI2 with 2-pyridyl aldoxime (2paoH), 3-pyridyl aldoxime (3paoH), 4-pyridyl aldoxime (4paoH), 2-6-diacetylpyridine dioxime (dapdoH2) and 2,6-pyridyl diamidoxime (LH4). The primary goal was to contribute to understanding the molecular basis of the very good liquid extraction ability of 2-pyridyl ketoximes with long aliphatic chains towards toxic Cd(II) and the inability of their 4-pyridyl isomers for this extraction. Our systematic investigation provided access to coordination complexes [CdI2(2paoH)2] (1), {[CdI2(3paoH)2]}n (2), {[CdI2(4paoH)2]}n (3) and [CdI2(dapdoH2)] (4). The reaction of CdI2 and LH4 in EtOH resulted in a Cd(II)-involving reaction of the bis(amidoxime) and isolation of [CdI2(L'H2)] (5), where L'H2 is the new ligand 2,6-bis(ethoxy)pyridine diimine. A mechanism of this transformation has been proposed. The structures of 1, 2, 3, 4·2EtOH and 5 were determined by single-crystal X-ray crystallography. The complexes have been characterized by FT-IR and FT-Raman spectra in the solid state and the data are discussed in terms of structural features. The stability of the complexes in DMSO was investigated by 1H NMR spectroscopy. Our studies confirm that the excellent extraction ability of 2-pyridyl ketoximes is due to the chelating nature of the extractants leading to thermodynamically stable Cd(II) complexes. The monodentate coordination of 4-pyridyl ketoximes (as confirmed in our model complexes with 4paoH and 3paoH) seems to be responsible for their poor performance as extractants.

3.
Molecules ; 27(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36364229

RESUMO

The global trend in restrictions on pollutant emissions requires the use of catalytic converters in the automotive industry. Noble metals belonging to the platinum group metals (PGMs, platinum, palladium, and rhodium) are currently used for autocatalysts. However, recent efforts focus on the development of new catalytic converters that combine high activity and reduced cost, attracting the interest of the automotive industry. Among them, the partial substitution of PGMs by abundant non-PGMs (transition metals such as copper) seems to be a promising alternative. The PROMETHEUS catalyst (PROM100) is a polymetallic nanosized copper-based catalyst for automotives prepared by a wet impregnation method, using as a carrier an inorganic mixed oxide (CeO2-ZrO2) exhibiting elevated oxygen storage capacity. On the other hand, catalyst deactivation or ageing is defined as the process in which the structure and state of the catalyst change, leading to the loss of the catalyst's active sites with a subsequent decrease in the catalyst's performance, significantly affecting the emissions of the catalyst. The main scope of this research is to investigate in detail the effect of ageing on this low-cost, effective catalyst. To that end, a detailed characterization has been performed with a train of methods, such as SEM, Raman, XRD, XRF, BET and XPS, to both ceria-zirconia mixed inorganic oxide support (CZ-fresh and -aged) and to the copper-based catalyst (PROM100-fresh and -aged), revealing the impact of ageing on catalytic efficiency. It was found that ageing affects the Ce-Zr mixed oxide structure by initiating the formation of distinct ZrO2 and CeO2 structures monitored by Raman and XRD. In addition, it crucially affects the morphology of the sample by reducing the surface area by a factor of nearly two orders of magnitude and increasing particle size as indicated by BET and SEM due to sintering. Finally, the Pd concentration was found to be considerably reduced from the material's surface as suggested by XPS data. The above-mentioned alterations observed after ageing increased the light-off temperatures by more than 175 °C, compared to the fresh sample, without affecting the overall efficiency of the catalyst for CO and CH4 oxidation reactions. Metal particle and CeZr carrier sintering, washcoat loss as well as partial metal encapsulation by Cu and/or CeZrO4 are identified as the main causes for the deactivation after hydrothermal ageing.

4.
Molecules ; 26(1)2021 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-33401526

RESUMO

Polymeric composites constitute an appealing class of materials with applications in various fields. Spin crossover (SCO) coordination complexes are switchable materials with potential use in data storage and sensors. Their incorporation into polymers can be considered an effective method for their wider practical application. In this study, Fe(II) SCO/polylactic acid hybrid polymeric composites have been prepared by film casting. The mononuclear coordination complex [Fe{N(CN)2}2(abpt)2] was incorporated into polylactic acid. The morphological, structural and thermoanalytical characterization of the composite films were performed via scanning electron microscopy (SEM), attenuated total reflectance (ATR/FTIR), Raman spectroscopy and differential scanning calorimetry (DSC). In addition, the migration release study (MRS) of the SCO compound from the polymeric matrix into the food simulant 50% v/v water/ethanol solution was also examined via UV/Vis absorption. Of particular interest was the investigation of the SCO behavior of the coordination complex after its incorporation into the polymer matrix; it was accomplished by temperature-dependent micro-Raman spectroscopy. The described attempt could be considered a preparatory step toward the development of SCO-based temperature sensors integrated into food packaging materials.


Assuntos
Complexos de Coordenação/química , Compostos Ferrosos/química , Embalagem de Alimentos , Poliésteres/química , Modelos Moleculares , Análise Espectral Raman
5.
Inorg Chem ; 58(8): 5183-5195, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30916940

RESUMO

The spin-crossover (SCO) polymorph B (complex 1) of the known compound [FeII{N(CN)2}2(abpt)2], where abpt is 4-amino-3,5-bis(pyridin-2-yl)-1,2,4-triazole, has been prepared in three different particle sizes averaging ∼300 (sample 1a), ∼80 (sample 1b), and ∼20 nm (sample 1c). Two independent octahedral molecules possessing Fe1 and Fe2 were found to be present in the crystal of B. Magnetostructural relationships had established that at room temperature both FeII sites are in the high-spin state (HS-HS), whereas a decrease in the temperature to 90 K induces the complete high-spin to low-spin conversion of the Fe1 site, with Fe2 remaining in the high-spin state (LS-HS). The three samples have been characterized by elemental analyses, ATR spectra, solution UV/vis spectra (to exclude resonance Raman effects) and powder X-ray diffraction patterns, while their morphological characteristics have been examined by scanning electron microscopy (SEM). The SCO behavior of the originally prepared sample 1a has been monitored in detail by variable-temperature Raman studies in the 300-80 K range using mainly low-frequency ν(Fe-N) and δ(NFeN) modes and the ν(C≡N) mode of the axial dicyanamido groups as spin-sensitive vibrations. The new peaks that appear in the low-temperature Raman spectra of the LS-HS form of the complex are reproduced in the calculated spectrum of the LS state of [FeII{N(CN)2}2(abpt)2]. The influence of the average particle size on the SCO properties of 1 has also been studied by variable-temperature Raman spectra. The studies indicate that, during the HS-HS → LS-HS transition, the latter form of the complex appears at higher temperatures for the smaller particles; the T1/2 shift accomplished by manipulating the particle size within a range of roughly 1 order of magnitude (300-20 nm) may be as high as ∼30 K. The SCO features of 1, as deduced from the Raman study, are in excellent agreement with those derived from a traditional variable-temperature magnetic susceptibility study, indicating the utility of the former.

6.
Dalton Trans ; 52(24): 8332-8343, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37259668

RESUMO

The initial use of a tetradentate Schiff base (LH2) derived from the 2 : 1 condensation between 2-hydroxyacetophenone and cyclohexane-1,2-diamine in 4f-metal chemistry is described. The 1 : 2 reaction of Ln(NO3)3·xH2O (Ln = lanthanoid or yttrium) and LH2 in MeOH/CH2Cl2 has provided access to isostructural complexes [Ln(NO3)3(L'H2)(MeOH)] in moderate to good yields. Surprisingly, the products contain the corresponding Schiff base ligand L'H2 possessing six aliphatic -CH2- groups instead of the -CH-(CH2)4-CH- unit of the cyclohexane ring, i.e. an unusual ring-opening of the latter has occurred. A mechanism for this LnIII-assisted/promoted LH2 → L'H2 transformation has been proposed assuming transient LnII species and a second LH2 molecule as the H2 source for the reduction of the cyclohexane moiety. DFT calculations provide strong evidence for the great thermodynamic stability of the products in comparison with analogous complexes containing the original intact ligand. The structures of the PrIII, SmIII, GdIII, TbIII, and HoIII complexes have been determined by single-crystal X-ray crystallography. The 9-coordinate LnIII centre in the molecules is bound to six oxygen atoms from the three bidentate chelating nitrato groups, two oxygen atoms that belong to the bidentate chelating organic ligand, and one oxygen atom from the coordinated MeOH group. In the overall neutral bis(zwitterionic) L'H2 ligand, the acidic H atoms are clearly located on the imino nitrogen atoms and this results in the formation of an unusual 16-membered chelating ring. The coordination polyhedra defined by the nine donor atoms around the 4f-metal-ion centres can be best described as distorted, spherical capped square antiprisms. The EuIII, TbIII, and DyIII complexes exhibit LnIII-based luminescence in the visible region, with the coordinated L'H2 molecule acting as the antenna. Ac magnetometry experiments show that the DyIII member of the family behaves as an SIM at zero field and under external dc fields of 0.1 and 0.2 T without the enhancement of the peaks' maxima, suggesting that QTM is not the relaxation path. The GdIII complex behaves, rather unexpectedly, as a SIM with two different magnetic relaxation paths occurring at very close temperatures; this behaviour is tentatively attributed to a very small axial zero-field splitting (D ∼ 0.1 cm-1), which cannot be detected by magnetization or susceptibility experiments. The prospects of the present, first results in the lanthanoid(III)-LH2 chemistry are discussed.

7.
Dalton Trans ; 51(41): 15771-15782, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36178466

RESUMO

Reactions of 2-benzoylpyridine, (py)(ph)CO, with InX3 (X = Cl, Br) in EtOH at room temperature have been studied. The InCl3/(py)(ph)CO system has provided access to complex [InCl3{(py)(ph)CO}(EtOH)]·{(py)(ph)CO} (1) and the byproduct {(pyH)(ph)CO}Cl (2). The reaction of InBr3 with (py)(ph)CO has led to a mixture of (L)[InBr4{(py)(ph)CO}] (3) and [In2Br4{(py)(ph)CH(O)}2(EtOH)2] (4), where L+ is the 9-oxo-indolo[1,2-a]pyridinium cation and (py)(ph)CH(O)- is the anion of (pyridin-2-yl)methanol. Based on solubility and crystallisation time differences between the two components of the mixture, complex 4 was isolated in pure form, i.e. free from 3. The formations of the counterion L+ and the coordinated (py)(ph)CH(O)- anion represent clearly InBr3-promoted/assisted transformations. Reaction mechanisms have been proposed for the formation of 2, 3 and 4. Complex 4 could also be isolated by the reaction of InBr3 and pre-formed (py)(ph)CH(OH) in EtOH. The solid-state structures of 1, 3 and 4 were determined by single-crystal X-ray crystallography, while the identity of the salt 2 was confirmed by microanalyses and a variety of spectroscopic techniques, including ESI-MS spectra. In the indium(III) complexes, the metal ions are 6-coordinate with a distorted octahedral geometry. The halogeno groups (Cl-, Br-) in the three complexes are terminal. The (py)(ph)CO molecule behaves as a N,O-bidentate (1.11) ligand in 1 and 3. A terminal EtOH ligand completes the coordination sphere of InIII in 1. The alkoxo oxygen atoms of the two 2.21 (py)(ph)CH(O)- ligands doubly bridge the InIII centers in 4 creating a {InIII2(µ-OR)2}4+ core; a nitrogen atom of one reduced organic ligand, two bromo ions and one terminal EtOH molecule complete the 6-coordination at each metal centre. Complexes 1, 3 and 4 were characterised by IR and Raman spectroscopies, and the data were discussed in terms of their known solid-state structures. Molar conductivity data and 1H NMR spectra were used in an attempt to probe the behaviour of the complexes in DMSO. The to-date observed metal ion-assisted/promoted transformations of (py)(ph)CO are also discussed.

8.
Chem Commun (Camb) ; 58(4): 521-524, 2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-34908051

RESUMO

In this study, a simple, fast, one-pot approach for the isolation of nanowires (NWs) in coordination chemistry is reported. Nanowires (NWs) of spin-crossover (SCO) materials are extremely rare. Here, an innovative and easy synthetic process was developed to prepare NWs of a switchable polymorph of the known complex trans-[Fe(NCS)2(abpt)2] using a wet-chemistry approach for the first time; abpt is the bidentate chelating ligand 4-amino-3,5-bis(pyridin-2-yl)-1,2,4-triazole. The remarkable smoothness of the high-spin to low-spin transition, monitored through variable-temperature (300-80 K) Raman microscopy, compared with the sharp transition exhibited by the polycrystalline material, demonstrates the effect of the topological properties on the physical phenomena of the system.

9.
Heliyon ; 8(6): e09705, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35721682

RESUMO

This work describes the reaction of the potentially tetradentate Schiff-base ligand N-(2-pyridylmethy)-3-methoxysalicylaldimine (HL) with UO2(O2CMe)2·2H2O and UO2(NO3)2· 6H2O in MeOH in the absence or presence of an external base, respectively. The product from these reactions is the mononuclear complex [UO2(L)2] (1). Its structure has been determined by single-crystal, X-ray crystallography. The anionic ligand adopts two different coordination modes (1.1011, 1.1010; Harris notation) in the complex. The new compound was fully characterized by solid-state (IR, Raman and Photoluminescence spectroscopies) and solution (UV-Vis and 1H NMR spectra, conductivity measurements) techniques.

10.
Dalton Trans ; 46(26): 8458-8475, 2017 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-28627547

RESUMO

Nucleophilic attack by the carbanion -:CH2COCH3 at the carbonyl group of di-2-pyridyl ketone, (py)2CO, in the presence of CuII under moderately basic conditions has yielded the cationic mononuclear complex [Cu{(py)2C(CH2COCH3)(OH)}2](NO3)2·2H2O (1·2H2O) in ∼40% yield, where (py)2C(CH2COCH3)(OH) is the ligand bis(2-pyridine-2-yl)butane-1-ol-3-one. The CuII atom of the cation sits on a crystallographically imposed inversion center. The neutral molecule is coordinated to the metal ion as a tridentate fac chelating ligand through the hydroxyl oxygen atom and two 2-pyridyl nitrogen atoms. The pyridyl nitrogens are strongly coordinated to the metal ion, while the hydroxyl oxygen atoms form weak bonds with CuII. The coordination geometry at the CuII center is elongated octahedral. Various interactions build the crystal structure of the complex and Hirshfeld surface analysis was applied to evaluate the magnitude of interactions between the different chemical species in the crystal of 1·2H2O. IR, Raman and UV/VIS data of the solid complex are discussed in terms of the coordination mode of (py)2C(CH2COCH3)(OH), the ionic nature of nitrates and the stereochemistry at copper(ii). The complex was studied in a frozen solution (MeOH-toluene, 1 : 1 v/v) by CW-EPR spectroscopy and advanced EPR methods such as ENDOR and HYSCORE. The results show that the low symmetry of the cation is retained in solution, with the four nitrogen atoms arranged in a square planar configuration and the unpaired electron residing in an orbital pointing towards them. The bonding parameters in the first coordination sphere and the spin density distribution have been fully analyzed based on the ligand hyperfine coupling constants.

11.
Dalton Trans ; 46(1): 260-274, 2016 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-27934986

RESUMO

The reactions of copper(ii) carboxylate sources with acetylacetone dioxime (acacdoH2) in Me2CO have been studied and a novel, metal ion-assisted ligand transformation has been discovered. The reaction of [Cu2(diba)4(dibaH)2] and acacdoH2 (1 : 1.5) in Me2CO has provided access to the complex {[Cu2(diba)4(qunx)]}n (1) in low yield (25-30%), where dibaH is 3,3-dimethylbutyric acid and qunx is quinoxaline. The [Cu2(piv)4(pivH)2]/acacdoH2 (1 : 1.5) reaction system in warm Me2CO, where pivH is pivalic acid, gave the analogous complex {[Cu2(piv)4(qunx)]}n (2) in moderate yield (∼50%). Complexes 1 and 2 can be easily prepared by the direct 1 : 1 reactions between the corresponding copper(ii) carboxylate starting materials and qunx in Me2CO and MeOH, respectively. The formation of coordinated qunx in 1 and 2 is CuII-promoted (assisted) as suggested by the failure to synthesize the free qunx by a variety of reactions of acacdoH2 and Me2CO under aerobic conditions in the absence or even the presence of dibaH and pivH, respectively. The observed acacdoH2 → qunx transformation is catalytic and new in the chemistry of the dioximes of ß-diketones, and a mechanism has been proposed based on well-established reactions of organic chemistry. The mechanism is based on a double Beckmann rearrangement-type transformation and the overall scheme is represented by the 1 : 1 : 1 reaction between acacdoH2, Me2CO and O2. Complexes 1 and 2 have similar molecular structures consisting of paddle-wheel {Cu2(η1:η1:µ-O2CR)4} units bridged by qunx ligands in a zigzag 1D chain arrangement. The geometry of the CuII ions is square pyramidal with a quinoxaline nitrogen atom occupying the apical position at each metal ion. Weak H bonds are present within the chains, the donors being qunx carbon atoms and the acceptors being coordinated carboxylate oxygen atoms. Neighbouring chains interact through C-Hπ interactions between diba-/piv- methyl groups and the "pyrazine" part of qunx forming layers which are stacked along the b (1) or a (2) axis through weak van der Waals interactions. The packing of the layers is different in the two structures, due to the different nature of the carboxylate ligands. Hirshfeld surface analysis of the two structures reveals the similarity of the interchain (intralayer) interactions. The IR and Raman data of 1 and 2 are discussed in terms of the coordination mode of the carboxylate groups and permit assignments of some characteristic bands/peaks of coordinated qunx. Dc magnetic susceptibility studies in the 1.8-310 K range reveal very strong antiferromagnetic CuIICuII exchange interactions within the carboxylate-bridged Cu2 units (J = -479 K for 1 and -532 K for 2 using the H = - J∑S1·S2 spin Hamiltonian) and weaker antiferromagnetic interactions between the Cu2 units via the qunx superexchange pathways, with the latter being ∼10% in strength compared to the former. A critical discussion of the acacdoH2 → qunx transformation in 1 and 2 is provided in the light of other impressive, recently discovered CuII-assisted transformations of acacdoH2, pointing out the key role of the solvent in the processes known to date.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa