Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Physiol ; 230(6): 1298-309, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25469885

RESUMO

Galectin-1 (Gal1), a ß-galactoside-binding protein abundantly expressed in tumor microenvironments, is associated with the development of metastasis in hepatocellular carcinomas (HCC). However, the precise roles of Gal1 in HCC cell invasiveness and dissemination are uncertain. Here, we investigated whether Gal1 mediate epithelial-mesenchymal transition (EMT) in HCC cells, a key process during cancer progression. We used the well-differentiated and low invasive HepG2 cells and performed 'gain-of-function' and 'loss-function' experiments by transfecting cells with Gal1 cDNA constructs or by siRNA strategies, respectively. Epithelial and mesenchymal markers expression, changes in apico-basal polarity, independent-anchorage growth, and activation of specific signaling pathways were studied using Western blot, fluorescence microscopy, soft-agar assays, and FOP/TOP flash reporter system. Gal1 up-regulation in HepG2 cells induced down-regulation of the adherens junction protein E-cadherin and increased expression of the transcription factor Snail, one of the main inducers of EMT in HCC. Enhanced Gal1 expression facilitated the transition from epithelial cell morphology towards a fibroblastoid phenotype and favored up-regulation of the mesenchymal marker vimentin in HCC cells. Cells overexpressing Gal1 showed enhanced anchorage-independent growth and loss of apico-basal polarity. Remarkably, Gal1 promoted Akt activation, ß-catenin nuclear translocation, TCF4/LEF1 transcriptional activity and increased cyclin D1 and c-Myc expression, suggesting activation of the Wnt pathway. Furthermore, Gal1 overexpression induced E-cadherin downregulation through a PI3K/Akt-dependent mechanism. Our results provide the first evidence of a role of Gal1 as an inducer of EMT in HCC cells, with critical implications in HCC metastasis.


Assuntos
Caderinas/metabolismo , Carcinoma Hepatocelular/metabolismo , Transição Epitelial-Mesenquimal/fisiologia , Galectina 1/metabolismo , Linhagem Celular Tumoral , Regulação para Baixo/fisiologia , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Regulação para Cima , beta Catenina/metabolismo
2.
Glycobiology ; 24(10): 899-906, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24939371

RESUMO

Prostate cancer is the second most common cause of cancer and the sixth leading cause of cancer death among men worldwide. While localized prostate cancer can be cured, advanced and metastatic prostate cancer remains a significant therapeutic challenge. Malignant transformation is associated with important modifications of the cellular glycosylation profile, and it is postulated that these changes have a considerable relevance for tumor biology. Metastasis is a multiphasic process that encompasses angiogenesis, the spread of tumor cells and their growth at distant sites from the primary tumor location. Recognition of glycoconjugates by galectins, among other lectins, plays a fundamental role in the metastatic spread, tumor immune escape and the neovascularization process. Particularly in prostate cancer, both carbohydrates and galectins have been implicated in many cellular processes such as proliferation, apoptosis, migration and invasion. However, a limited number of studies assessed their potential implications in the induction of metastasis in prostate cancer patients or in animal models. Moreover, the role of galectin-glycan interactions in vivo still remains poorly understood; concerted effort should thus be made in order to shed some light on this question. This review summarizes current evidence on both the expression and role of glycans and galectins in prostate cancer, particularly turning our attention to the angiogenic and metastatic processes.


Assuntos
Galectinas/genética , Neovascularização Patológica/genética , Polissacarídeos/genética , Neoplasias da Próstata/genética , Apoptose/genética , Movimento Celular/genética , Proliferação de Células/genética , Galectinas/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Metástase Neoplásica , Polissacarídeos/metabolismo , Neoplasias da Próstata/patologia
3.
IUBMB Life ; 62(1): 1-13, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20014236

RESUMO

Galectins are a family of evolutionarily conserved animal lectins with pleiotropic functions and widespread distribution. Fifteen members have been identified in a wide variety of cells and tissues. Through recognition of cell surface glycoproteins and glycolipids, these endogenous lectins can trigger a cascade of intracellular signaling pathways capable of modulating cell differentiation, proliferation, survival, and migration. These cellular events are critical in a variety of biological processes including embryogenesis, angiogenesis, neurogenesis, and immunity and are substantially altered during tumorigenesis, neurodegeneration, and inflammation. In addition, galectins can modulate intracellular functions and this effect involves direct interactions with distinct signaling pathways. In this review, we discuss current knowledge on the intracellular signaling pathways triggered by this multifunctional family of beta-galactoside-binding proteins in selected physiological and pathological settings. Understanding the "galectin signalosome" will be essential to delineate rational therapeutic strategies based on the specific control of galectin expression and function.


Assuntos
Galectinas/metabolismo , Hematopoese/fisiologia , Neoplasias/fisiopatologia , Polissacarídeos/metabolismo , Transdução de Sinais , Animais , Humanos
4.
Clin Cancer Res ; 23(17): 5135-5148, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28512172

RESUMO

Purpose: Conditioning strategies constitute a relatively unexplored and exciting opportunity to shape tumor fate by targeting the tumor microenvironment. In this study, we assessed how hemin, a pharmacologic inducer of heme oxygenase-1 (HO-1), has an impact on prostate cancer development in an in vivo conditioning model.Experimental Design: The stroma of C57BL/6 mice was conditioned by subcutaneous administration of hemin prior to TRAMP-C1 tumor challenge. Complementary in vitro and in vivo assays were performed to evaluate hemin effect on both angiogenesis and the immune response. To gain clinical insight, we used prostate cancer patient-derived samples in our studies to assess the expression of HO-1 and other relevant genes.Results: Conditioning resulted in increased tumor latency and decreased initial growth rate. Histologic analysis of tumors grown in conditioned mice revealed impaired vascularization. Hemin-treated human umbilical vein endothelial cells (HUVEC) exhibited decreased tubulogenesis in vitro only in the presence of TRAMP-C1-conditioned media. Subcutaneous hemin conditioning hindered tumor-associated neovascularization in an in vivo Matrigel plug assay. In addition, hemin boosted CD8+ T-cell proliferation and degranulation in vitro and antigen-specific cytotoxicity in vivo A significant systemic increase in CD8+ T-cell frequency was observed in preconditioned tumor-bearing mice. Tumors from hemin-conditioned mice showed reduced expression of galectin-1 (Gal-1), key modulator of tumor angiogenesis and immunity, evidencing persistent remodeling of the microenvironment. We also found a subset of prostate cancer patient-derived xenografts and prostate cancer patient samples with mild HO-1 and low Gal-1 expression levels.Conclusions: These results highlight a novel function of a human-used drug as a means of boosting the antitumor response. Clin Cancer Res; 23(17); 5135-48. ©2017 AACR.


Assuntos
Galectina 1/genética , Heme Oxigenase-1/genética , Hemina/administração & dosagem , Neoplasias da Próstata/tratamento farmacológico , Animais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/patologia , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Galectina 1/antagonistas & inibidores , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Heme Oxigenase-1/antagonistas & inibidores , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Masculino , Camundongos , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Methods Mol Biol ; 1207: 249-68, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25253145

RESUMO

During the past decade, a better understanding of the cellular and molecular mechanisms underlying tumor immunity has provided the appropriate framework for the development of therapeutic strategies for cancer immunotherapy. Under this complex scenario, galectins have emerged as promising molecular targets for cancer therapy responsible of creating immunosuppressive microenvironments at sites of tumor growth and metastasis. Galectins, expressed in tumor, stromal, and endothelial cells, contribute to thwart the development of immune responses by favoring the expansion of T regulatory cells and contributing to their immunosuppressive activity, driving the differentiation of tolerogenic dendritic cells, limiting T cell viability, and maintaining T cell anergy. The emerging data promise a future scenario in which the selective blockade of individual members of the galectin family, either alone or in combination with other therapeutic regimens, will contribute to halt tumor progression by counteracting tumor-immune escape. Here we describe a selection of methods used to investigate the role of galectin-1 in tumor-immune escape.


Assuntos
Galectinas/metabolismo , Neoplasias/imunologia , Neoplasias/metabolismo , Transferência Adotiva , Animais , Antígenos de Neoplasias/imunologia , Western Blotting , Células da Medula Óssea/citologia , Complexo CD3/metabolismo , Proliferação de Células , Separação Celular , Citocinas/metabolismo , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Galectina 1/metabolismo , Inativação Gênica , Vetores Genéticos/genética , Humanos , Interleucina-27/metabolismo , Lentivirus/genética , Linfonodos/imunologia , Camundongos , Neoplasias/patologia , Fosforilação , Fator de Transcrição STAT3/metabolismo , Baço/imunologia , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Transdução Genética , Microambiente Tumoral
6.
Methods Mol Biol ; 1207: 293-304, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25253148

RESUMO

Formation of an aberrant and heterogeneous vascular network is a key pathological event in the multistep process of tumor growth and metastasis. Pro-angiogenic factors are synthesized and released from tumor, stromal, endothelial, and myeloid cells in response to hypoxic and immunosuppressive microenvironments which are commonly found during cancer progression. Emerging data indicate key roles for galectins, particularly galectin-1, -3, -8, and -9 in the regulation of angiogenesis in different pathophysiologic settings. Each galectin interacts with a preferred set of glycosylated receptors, triggers different signaling pathway, and promotes sprouting angiogenesis through different mechanisms. Understanding the role of galectins in tumor neovascularization will contribute to the design of novel anti-angiogenic therapies aimed at complementing current clinical approaches. Here we describe selected strategies and methods used to study the galectin-1 regulation by hypoxia and its role in blood vessel formation.


Assuntos
Galectina 1/metabolismo , Neovascularização Patológica/metabolismo , Western Blotting , Hipóxia Celular , Movimento Celular , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Solubilidade , Microambiente Tumoral , Fator A de Crescimento do Endotélio Vascular/química , Fator A de Crescimento do Endotélio Vascular/metabolismo
7.
Prostate Cancer ; 2013: 519436, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24205440

RESUMO

A better understanding of multimolecular interactions involved in tumor dissemination is required to identify new effective therapies for advanced prostate cancer (PCa). Several groups investigated protein-glycan interactions as critical factors for crosstalk between prostate tumors and their microenvironment. This review both discusses whether the "galectin-signature" might serve as a reliable biomarker for the identification of patients with high risk of metastasis and assesses the galectin-glycan lattices as potential novel targets for anticancer therapies. The ultimate goal of this review is to convey how basic findings related to galectins could be in turn translated into clinical settings for patients with advanced PCa.

8.
Oncoimmunology ; 2(4): e23565, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23734312

RESUMO

Galectins, a family of glycan-binding proteins, can control tumor progression by promoting transformation, angiogenesis and immune escape. We identified a dynamically regulated 'galectin signature', which delineates the progression of prostate cancer, highlighting galectin-1 as an attractive target for anti-angiogenic therapy in advanced stages of the disease.

9.
Cancer Res ; 73(1): 86-96, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23108139

RESUMO

Galectins, a family of glycan-binding proteins, influence tumor progression by modulating interactions between tumor, endothelial, stromal, and immune cells. Despite considerable progress in identifying the roles of individual galectins in tumor biology, an integrated portrait of the galectin network in different tumor microenvironments is still missing. We undertook this study to analyze the "galectin signature" of the human prostate cancer microenvironment with the overarching goal of selecting novel-molecular targets for prognostic and therapeutic purposes. In examining androgen-responsive and castration-resistant prostate cancer cells and primary tumors representing different stages of the disease, we found that galectin-1 (Gal-1) was the most abundantly expressed galectin in prostate cancer tissue and was markedly upregulated during disease progression. In contrast, all other galectins were expressed at lower levels: Gal-3, -4, -9, and -12 were downregulated during disease evolution, whereas expression of Gal-8 was unchanged. Given the prominent regulation of Gal-1 during prostate cancer progression and its predominant localization at the tumor-vascular interface, we analyzed the potential role of this endogenous lectin in prostate cancer angiogenesis. In human prostate cancer tissue arrays, Gal-1 expression correlated with the presence of blood vessels, particularly in advanced stages of the disease. Silencing Gal-1 in prostate cancer cells reduced tumor vascularization without altering expression of other angiogenesis-related genes. Collectively, our findings identify a dynamically regulated "galectin-specific signature" that accompanies disease evolution in prostate cancer, and they highlight a major role for Gal-1 as a tractable target for antiangiogenic therapy in advanced stages of the disease.


Assuntos
Galectina 1/metabolismo , Terapia de Alvo Molecular , Neovascularização Patológica/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Idoso , Progressão da Doença , Galectina 1/genética , Humanos , Immunoblotting , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Neovascularização Patológica/genética , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise Serial de Tecidos , Transcriptoma , Microambiente Tumoral/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa