Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Peripher Nerv Syst ; 28(3): 407-414, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37288802

RESUMO

BACKGROUND AND AIMS: Guillain-Barré syndrome (GBS) is a rare, acute neuropathy characterized by ascending muscle weakness. Age, axonal GBS variants, and antecedent Campylobacter jejuni infection are associated with severe GBS, but the detailed mechanisms of nerve damage are only partly explored. Pro-inflammatory myeloid cells express NADPH oxidases (NOX) that generate tissue-toxic reactive oxygen species (ROS) that are implicated in neurodegenerative diseases. This study analyzed the impact of variants of the gene encoding the functional NOX subunit CYBA (p22phox ) on acute severity, axonal damage, and recovery in adult GBS patients. METHODS: Extracted DNA from 121 patients was genotyped for allelic variation at rs1049254 and rs4673 within CYBA using real-time quantitative polymerase chain reaction. Serum neurofilament light chain was quantified by single molecule array. Patients were followed for severity and motor function recovery for up to 13 years. RESULTS: CYBA genotypes linked to reduced formation of ROS, i.e. rs1049254/G and rs4673/A, were significantly associated with unassisted ventilation, shorter time to normalization of serum neurofilament light chain and shorter time to regained motor function. Residual disability at follow-up was confined to patients carrying CYBA alleles associated with high formation of ROS. INTERPRETATION: These findings implicate NOX-derived ROS in GBS pathophysiology and CYBA alleles as biomarkers of severity.


Assuntos
Síndrome de Guillain-Barré , Adulto , Humanos , Alelos , Biomarcadores , Síndrome de Guillain-Barré/genética , Síndrome de Guillain-Barré/fisiopatologia , NADPH Oxidases/genética , Espécies Reativas de Oxigênio , Gravidade do Paciente
2.
J Neurol ; 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39249104

RESUMO

BACKGROUND: Elevated neurofilament light chain (NfL) levels are associated with worse prognosis in Guillain-Barré syndrome (GBS). Our objectives were to determine the utility of serum NfL (sNfL), cerebrospinal fluid (CSF)/serum NfL ratio and NfL index as prognostic and diagnostic biomarkers for GBS. METHODS: We measured NfL in serum and/or CSF obtained from 96 GBS patients between 1989 and 2014 in western Sweden. The sNfL Z-scores, NfL ratios and NfL indices were calculated. Outcome was determined with the GBS disability scale (GBSDS) at 3 and 12 months. NfL parameters in GBS were compared with healthy controls (HC), multiple sclerosis (MS), and amyotrophic lateral sclerosis (ALS). RESULTS: The sNfL Z-score was higher for GBSDS > 2 at 3 months (median [IQR], 3.5 ng/L [3.2-4.0], vs 2.6 [1.7-3.4], p = 0.008) and at 12 months (3.6 ng/L [3.5-3.8] vs 2.6 [1.8-3.5], p = 0.049). NfL ratio and index were not associated with outcome. The area under the curve (AUC) for sNfL Z-score was 0.76 (95% CI 0.58-0.93, p < 0.0001) for GBSDS > 2 at 3 months. NfL ratio and index were lower in GBS than HC, MS, and ALS. The AUC for the NfL ratio was 0.66 (95% CI 0.55-0.78, p = 0.0018) and for the NfL index 0.86 (95% CI 0.78-0.93, p < 0.0001). DISCUSSION: Our results confirm sNfL as prognostic biomarker for GBS and the precision was improved using the age-adjusted sNfL Z score. NfL index and Qalb are potential diagnostic biomarkers for GBS.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa