Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Philos Trans A Math Phys Eng Sci ; 376(2116)2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29459413

RESUMO

The efficient production of cold antihydrogen atoms in particle traps at CERN's Antiproton Decelerator has opened up the possibility of performing direct measurements of the Earth's gravitational acceleration on purely antimatter bodies. The goal of the AEgIS collaboration is to measure the value of g for antimatter using a pulsed source of cold antihydrogen and a Moiré deflectometer/Talbot-Lau interferometer. The same antihydrogen beam is also very well suited to measuring precisely the ground-state hyperfine splitting of the anti-atom. The antihydrogen formation mechanism chosen by AEgIS is resonant charge exchange between cold antiprotons and Rydberg positronium. A series of technical developments regarding positrons and positronium (Ps formation in a dedicated room-temperature target, spectroscopy of the n=1-3 and n=3-15 transitions in Ps, Ps formation in a target at 10 K inside the 1 T magnetic field of the experiment) as well as antiprotons (high-efficiency trapping of [Formula: see text], radial compression to sub-millimetre radii of mixed [Formula: see text] plasmas in 1 T field, high-efficiency transfer of [Formula: see text] to the antihydrogen production trap using an in-flight launch and recapture procedure) were successfully implemented. Two further critical steps that are germane mainly to charge exchange formation of antihydrogen-cooling of antiprotons and formation of a beam of antihydrogen-are being addressed in parallel. The coming of ELENA will allow, in the very near future, the number of trappable antiprotons to be increased by more than a factor of 50. For the antihydrogen production scheme chosen by AEgIS, this will be reflected in a corresponding increase of produced antihydrogen atoms, leading to a significant reduction of measurement times and providing a path towards high-precision measurements.This article is part of the Theo Murphy meeting issue 'Antiproton physics in the ELENA era'.

2.
Nat Commun ; 5: 4538, 2014 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-25066810

RESUMO

The precise measurement of forces is one way to obtain deep insight into the fundamental interactions present in nature. In the context of neutral antimatter, the gravitational interaction is of high interest, potentially revealing new forces that violate the weak equivalence principle. Here we report on a successful extension of a tool from atom optics--the moiré deflectometer--for a measurement of the acceleration of slow antiprotons. The setup consists of two identical transmission gratings and a spatially resolving emulsion detector for antiproton annihilations. Absolute referencing of the observed antimatter pattern with a photon pattern experiencing no deflection allows the direct inference of forces present. The concept is also straightforwardly applicable to antihydrogen measurements as pursued by the AEgIS collaboration. The combination of these very different techniques from high energy and atomic physics opens a very promising route to the direct detection of the gravitational acceleration of neutral antimatter.

3.
Phys Rev Lett ; 101(5): 053401, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18764390

RESUMO

We demonstrate temporally controlled modulation of cold antihydrogen production by periodic RF heating of a positron plasma during antiproton-positron mixing in a Penning trap. Our observations have established a pulsed source of atomic antimatter, with a rise time of about 1 s, and a pulse length ranging from 3 to 100 s. Time-sensitive antihydrogen detection and positron plasma diagnostics, both capabilities of the ATHENA apparatus, allowed detailed studies of the pulsing behavior, which in turn gave information on the dependence of the antihydrogen production process on the positron temperature T. Our data are consistent with power law scaling T (-1.1+/-0.5) for the production rate in the high temperature regime from approximately 100 meV up to 1.5 eV. This is not in accord with the behavior accepted for conventional three-body recombination.

4.
Phys Rev Lett ; 97(15): 153401, 2006 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-17155325

RESUMO

We present evidence showing how antiprotonic hydrogen, the quasistable antiproton (p)-proton bound system, has been synthesized following the interaction of antiprotons with the molecular ion H2+ in a nested Penning trap environment. From a careful analysis of the spatial distributions of antiproton annihilation events, evidence is presented for antiprotonic hydrogen production with sub-eV kinetic energies in states around n=70, and with low angular momenta. The slow antiprotonic hydrogen may be studied using laser spectroscopic techniques.

5.
Phys Rev Lett ; 97(21): 213401, 2006 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-17155742

RESUMO

Antihydrogen can be synthesized by mixing antiprotons and positrons in a Penning trap environment. Here an experiment to stimulate the formation of antihydrogen in the n = 11 quantum state by the introduction of light from a CO2 continuous wave laser is described. An overall upper limit of 0.8% with 90% C.L. on the laser-induced enhancement of the recombination has been found. This result strongly suggests that radiative recombination contributes negligibly to the antihydrogen formed in the experimental conditions used by the ATHENA Collaboration.

6.
Phys Rev Lett ; 94(3): 033403, 2005 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-15698264

RESUMO

Antihydrogen is formed when antiprotons are mixed with cold positrons in a nested Penning trap. We present experimental evidence, obtained using our antihydrogen annihilation detector, that the spatial distribution of the emerging antihydrogen atoms is independent of the positron temperature and axially enhanced. This indicates that antihydrogen is formed before the antiprotons are in thermal equilibrium with the positron plasma. This result has important implications for the trapping and spectroscopy of antihydrogen.

7.
Phys Rev Lett ; 95(2): 025002, 2005 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-16090691

RESUMO

We have developed a new method, based on the ballistic transfer of preaccumulated plasmas, to obtain large and dense positron plasmas in a cryogenic environment. The method involves transferring plasmas emanating from a region with a low magnetic field (0.14 T) and relatively high pressure (10(-9) mbar) into a 15 K Penning-Malmberg trap immersed in a 3 T magnetic field with a base pressure better than 10(-13) mbar. The achieved positron accumulation rate in the high field cryogenic trap is more than one and a half orders of magnitude higher than the previous most efficient UHV compatible scheme. Subsequent stacking resulted in a plasma containing more than 1.2 x 10(9) positrons, which is a factor 4 higher than previously reported. Using a rotating wall electric field, plasmas containing about 20 x 10(6) positrons were compressed to a density of 2.6 x 10(10) cm(-3). This is a factor of 6 improvement over earlier measurements.

8.
Phys Rev Lett ; 91(5): 055001, 2003 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-12906600

RESUMO

Production of antihydrogen atoms by mixing antiprotons with a cold, confined, positron plasma depends critically on parameters such as the plasma density and temperature. We discuss nondestructive measurements, based on a novel, real-time analysis of excited, low-order plasma modes, that provide comprehensive characterization of the positron plasma in the ATHENA antihydrogen apparatus. The plasma length, radius, density, and total particle number are obtained. Measurement and control of plasma temperature variations, and the application to antihydrogen production experiments are discussed.

9.
Phys Rev Lett ; 92(6): 065005, 2004 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-14995248

RESUMO

We demonstrate three-dimensional imaging of antiprotons in a Penning trap, by reconstructing annihilation vertices from the trajectories of the charged annihilation products. The unique capability of antiparticle imaging has allowed, for the first time, the observation of the spatial distribution of the particle loss in a Penning trap. The radial loss of antiprotons on the trap wall is localized to small spots, strongly breaking the azimuthal symmetry expected for an ideal trap. Our observations have important implications for detection of antihydrogen annihilations.

10.
Nature ; 419(6906): 456-9, 2002 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-12368849

RESUMO

A theoretical underpinning of the standard model of fundamental particles and interactions is CPT invariance, which requires that the laws of physics be invariant under the combined discrete operations of charge conjugation, parity and time reversal. Antimatter, the existence of which was predicted by Dirac, can be used to test the CPT theorem-experimental investigations involving comparisons of particles with antiparticles are numerous. Cold atoms and anti-atoms, such as hydrogen and antihydrogen, could form the basis of a new precise test, as CPT invariance implies that they must have the same spectrum. Observations of antihydrogen in small quantities and at high energies have been reported at the European Organization for Nuclear Research (CERN) and at Fermilab, but these experiments were not suited to precision comparison measurements. Here we demonstrate the production of antihydrogen atoms at very low energy by mixing trapped antiprotons and positrons in a cryogenic environment. The neutral anti-atoms have been detected directly when they escape the trap and annihilate, producing a characteristic signature in an imaging particle detector.

11.
Phys Rev A ; 44(8): 5173-5177, 1991 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-9906571
12.
Phys Rev A ; 50(2): 977-987, 1994 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-9910984
13.
Phys Rev A Gen Phys ; 38(1): 107-114, 1988 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-9900143
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa