Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 24(11): 1782-1784, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37872314
2.
Immunity ; 54(11): 2442-2444, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34758334

RESUMO

Fungal proteases are well-known allergens. In this issue of Immunity, Wu et al. (2021) observe that allergic airway responses to Candida albicans are mediated by the peptide toxin candidalysin rather than proteases. Candidalysin promotes these responses by stimulating platelets to release the Wnt antagonist Dickkopf-1.


Assuntos
Asma , Candida , Candida albicans , Humanos
3.
Nature ; 630(8017): 736-743, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38839956

RESUMO

Phagocytosis is the process by which myeloid phagocytes bind to and internalize potentially dangerous microorganisms1. During phagocytosis, innate immune receptors and associated signalling proteins are localized to the maturing phagosome compartment, forming an immune information processing hub brimming with microorganism-sensing features2-8. Here we developed proximity labelling of phagosomal contents (PhagoPL) to identify proteins localizing to phagosomes containing model yeast and bacteria. By comparing the protein composition of phagosomes containing evolutionarily and biochemically distinct microorganisms, we unexpectedly identified programmed death-ligand 1 (PD-L1) as a protein that specifically enriches in phagosomes containing yeast. We found that PD-L1 directly binds to yeast upon processing in phagosomes. By surface display library screening, we identified the ribosomal protein Rpl20b as a fungal protein ligand for PD-L1. Using an auxin-inducible depletion system, we found that detection of Rpl20b by macrophages cross-regulates production of distinct cytokines including interleukin-10 (IL-10) induced by the activation of other innate immune receptors. Thus, this study establishes PhagoPL as a useful approach to quantifying the collection of proteins enriched in phagosomes during host-microorganism interactions, exemplified by identifying PD-L1 as a receptor that binds to fungi.


Assuntos
Antígeno B7-H1 , Proteínas Fúngicas , Fagossomos , Proteínas Ribossômicas , Saccharomyces cerevisiae , Animais , Feminino , Humanos , Masculino , Camundongos , Antígeno B7-H1/metabolismo , Escherichia coli/metabolismo , Proteínas Fúngicas/metabolismo , Interações entre Hospedeiro e Microrganismos , Imunidade Inata , Interleucina-10/metabolismo , Ligantes , Macrófagos/metabolismo , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos Endogâmicos BALB C , Fagocitose , Fagossomos/química , Fagossomos/metabolismo , Fagossomos/microbiologia , Ligação Proteica , Proteínas Ribossômicas/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Staphylococcus aureus/metabolismo
4.
PLoS Pathog ; 19(7): e1011505, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37428810

RESUMO

Most microbes have developed responses that protect them against stresses relevant to their niches. Some that inhabit reasonably predictable environments have evolved anticipatory responses that protect against impending stresses that are likely to be encountered in their niches-termed "adaptive prediction". Unlike yeasts such as Saccharomyces cerevisiae, Kluyveromyces lactis and Yarrowia lipolytica and other pathogenic Candida species we examined, the major fungal pathogen of humans, Candida albicans, activates an oxidative stress response following exposure to physiological glucose levels before an oxidative stress is even encountered. Why? Using competition assays with isogenic barcoded strains, we show that "glucose-enhanced oxidative stress resistance" phenotype enhances the fitness of C. albicans during neutrophil attack and during systemic infection in mice. This anticipatory response is dependent on glucose signalling rather than glucose metabolism. Our analysis of C. albicans signalling mutants reveals that the phenotype is not dependent on the sugar receptor repressor pathway, but is modulated by the glucose repression pathway and down-regulated by the cyclic AMP-protein kinase A pathway. Changes in catalase or glutathione levels do not correlate with the phenotype, but resistance to hydrogen peroxide is dependent on glucose-enhanced trehalose accumulation. The data suggest that the evolution of this anticipatory response has involved the recruitment of conserved signalling pathways and downstream cellular responses, and that this phenotype protects C. albicans from innate immune killing, thereby promoting the fitness of C. albicans in host niches.


Assuntos
Candida albicans , Glucose , Humanos , Animais , Camundongos , Glucose/metabolismo , Estresse Oxidativo/fisiologia , Neutrófilos , Saccharomyces cerevisiae/metabolismo , Proteínas Fúngicas/metabolismo
5.
PLoS Genet ; 16(1): e1008582, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31961865

RESUMO

Metabolic adaptation is linked to the ability of the opportunistic pathogen Candida albicans to colonize and cause infection in diverse host tissues. One way that C. albicans controls its metabolism is through the glucose repression pathway, where expression of alternative carbon source utilization genes is repressed in the presence of its preferred carbon source, glucose. Here we carry out genetic and gene expression studies that identify transcription factors Mig1 and Mig2 as mediators of glucose repression in C. albicans. The well-studied Mig1/2 orthologs ScMig1/2 mediate glucose repression in the yeast Saccharomyces cerevisiae; our data argue that C. albicans Mig1/2 function similarly as repressors of alternative carbon source utilization genes. However, Mig1/2 functions have several distinctive features in C. albicans. First, Mig1 and Mig2 have more co-equal roles in gene regulation than their S. cerevisiae orthologs. Second, Mig1 is regulated at the level of protein accumulation, more akin to ScMig2 than ScMig1. Third, Mig1 and Mig2 are together required for a unique aspect of C. albicans biology, the expression of several pathogenicity traits. Such Mig1/2-dependent traits include the abilities to form hyphae and biofilm, tolerance of cell wall inhibitors, and ability to damage macrophage-like cells and human endothelial cells. Finally, Mig1 is required for a puzzling feature of C. albicans biology that is not shared with S. cerevisiae: the essentiality of the Snf1 protein kinase, a central eukaryotic carbon metabolism regulator. Our results integrate Mig1 and Mig2 into the C. albicans glucose repression pathway and illuminate connections among carbon control, pathogenicity, and Snf1 essentiality.


Assuntos
Candida albicans/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Glucose/metabolismo , Fatores de Transcrição/metabolismo , Animais , Biofilmes , Candida albicans/efeitos dos fármacos , Candida albicans/patogenicidade , Linhagem Celular , Farmacorresistência Fúngica , Células Endoteliais/microbiologia , Proteínas Fúngicas/genética , Humanos , Macrófagos/microbiologia , Camundongos , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição/genética
6.
PLoS Genet ; 12(12): e1006487, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27935965

RESUMO

Biofilm formation on implanted medical devices is a major source of lethal invasive infection by Candida albicans. Filamentous growth of this fungus is tied to biofilm formation because many filamentation-associated genes are required for surface adherence. Cell cycle or cell growth defects can induce filamentation, but we have limited information about the coupling between filamentation and filamentation-associated gene expression after cell cycle/cell growth inhibition. Here we identified the CDK activating protein kinase Cak1 as a determinant of filamentation and filamentation-associated gene expression through a screen of mutations that diminish expression of protein kinase-related genes implicated in cell cycle/cell growth control. A cak1 diminished expression (DX) strain displays filamentous growth and expresses filamentation-associated genes in the absence of typical inducing signals. In a wild-type background, expression of filamentation-associated genes depends upon the transcription factors Bcr1, Brg1, Efg1, Tec1, and Ume6. In the cak1 DX background, the dependence of filamentation-associated gene expression on each transcription factor is substantially relieved. The unexpected bypass of filamentation-associated gene expression activators has the functional consequence of enabling biofilm formation in the absence of Bcr1, Brg1, Tec1, Ume6, or in the absence of both Brg1 and Ume6. It also enables filamentous cell morphogenesis, though not biofilm formation, in the absence of Efg1. Because these transcription factors are known to have shared target genes, we suggest that cell cycle/cell growth limitation leads to activation of several transcription factors, thus relieving dependence on any one.


Assuntos
Candida albicans/genética , Quinases Ciclina-Dependentes/genética , Proteínas Fúngicas/genética , Morfogênese/genética , Proteínas Quinases/genética , Biofilmes/crescimento & desenvolvimento , Candida albicans/crescimento & desenvolvimento , Candidíase/genética , Candidíase/microbiologia , Ciclo Celular/genética , Citoesqueleto/genética , Proteínas Fúngicas/biossíntese , Regulação Fúngica da Expressão Gênica , Humanos , Hifas/genética , Hifas/crescimento & desenvolvimento , Hifas/patogenicidade , Proteínas Quinases/biossíntese , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética , Quinase Ativadora de Quinase Dependente de Ciclina
8.
Res Sq ; 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36945526

RESUMO

Super-resolution optical imaging tools are crucial in microbiology to understand the complex structures and behavior of microorganisms such as bacteria, fungi, and viruses. However, the capabilities of these tools, particularly when it comes to imaging pathogens and infected tissues, remain limited. We developed µMagnify, a nanoscale multiplexed imaging method for pathogens and infected tissues that are derived from an expansion microscopy technique with a universal biomolecular anchor. We formulated an enzyme cocktail specifically designed for robust cell wall digestion and expansion of microbial cells without distortion while efficiently retaining biomolecules suitable for high-plex fluorescence imaging with nanoscale precision. Additionally, we developed an associated virtual reality tool to facilitate the visualization and navigation of complex three-dimensional images generated by this method in an immersive environment allowing collaborative exploration among researchers around the world. µMagnify is a valuable imaging platform for studying how microbes interact with their host systems and enables development of new diagnosis strategies against infectious diseases.

9.
Adv Sci (Weinh) ; 10(30): e2302249, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37658522

RESUMO

Super-resolution optical imaging tools are crucial in microbiology to understand the complex structures and behavior of microorganisms such as bacteria, fungi, and viruses. However, the capabilities of these tools, particularly when it comes to imaging pathogens and infected tissues, remain limited. MicroMagnify (µMagnify) is developed, a nanoscale multiplexed imaging method for pathogens and infected tissues that are derived from an expansion microscopy technique with a universal biomolecular anchor. The combination of heat denaturation and enzyme cocktails essential is found for robust cell wall digestion and expansion of microbial cells and infected tissues without distortion. µMagnify efficiently retains biomolecules suitable for high-plex fluorescence imaging with nanoscale precision. It demonstrates up to eightfold expansion with µMagnify on a broad range of pathogen-containing specimens, including bacterial and fungal biofilms, infected culture cells, fungus-infected mouse tone, and formalin-fixed paraffin-embedded human cornea infected by various pathogens. Additionally, an associated virtual reality tool is developed to facilitate the visualization and navigation of complex 3D images generated by this method in an immersive environment allowing collaborative exploration among researchers worldwide. µMagnify is a valuable imaging platform for studying how microbes interact with their host systems and enables the development of new diagnosis strategies against infectious diseases.


Assuntos
Bactérias , Microscopia , Humanos , Animais , Camundongos , Microscopia/métodos , Imagem Óptica
10.
mBio ; 13(6): e0260522, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36218369

RESUMO

Candida albicans exists as a commensal of mucosal surfaces and the gastrointestinal tract without causing pathology. However, this fungus is also a common cause of mucosal and systemic infections when antifungal immune defenses become compromised. The activation of antifungal host defenses depends on the recognition of fungal pathogen-associated molecular patterns (PAMPs), such as ß-1,3-glucan. In C. albicans, most ß-1,3-glucan is present in the inner cell wall, concealed by the outer mannan layer, but some ß-1,3-glucan becomes exposed at the cell surface. In response to host signals, such as lactate, C. albicans induces the Xog1 exoglucanase, which shaves exposed ß-1,3-glucan from the cell surface, thereby reducing phagocytic recognition. We show here that ß-1,3-glucan is exposed at bud scars and punctate foci on the lateral wall of yeast cells, that this exposed ß-1,3-glucan is targeted during phagocytic attack, and that lactate-induced masking reduces ß-1,3-glucan exposure at bud scars and at punctate foci. ß-1,3-Glucan masking depends upon protein kinase A (PKA) signaling. We reveal that inactivating PKA, or its conserved downstream effectors, Sin3 and Mig1/Mig2, affects the amounts of the Xog1 and Eng1 glucanases in the C. albicans secretome and modulates ß-1,3-glucan exposure. Furthermore, perturbing PKA, Sin3, or Mig1/Mig2 attenuates the virulence of lactate-exposed C. albicans cells in Galleria. Taken together, the data are consistent with the idea that ß-1,3-glucan masking contributes to Candida pathogenicity. IMPORTANCE Microbes that coexist with humans have evolved ways of avoiding or evading our immunological defenses. These include the masking by these microbes of their "pathogen-associated molecular patterns" (PAMPs), which are recognized as "foreign" and used to activate protective immunity. The commensal fungus Candida albicans masks the proinflammatory PAMP ß-1,3-glucan, which is an essential component of its cell wall. Most of this ß-1,3-glucan is hidden beneath an outer layer of the cell wall on these microbes, but some can become exposed at the fungal cell surface. Using high-resolution confocal microscopy, we examine the nature of the exposed ß-1,3-glucan at C. albicans bud scars and at punctate foci on the lateral cell wall, and we show that these features are targeted by innate immune cells. We also reveal that downstream effectors of protein kinase A (Mig1/Mig2, Sin3) regulate the secretion of major glucanases, modulate the levels of ß-1,3-glucan exposure, and influence the virulence of C. albicans in an invertebrate model of systemic infection. Our data support the view that ß-1,3-glucan masking contributes to immune evasion and the virulence of a major fungal pathogen of humans.


Assuntos
Candida albicans , beta-Glucanas , Antifúngicos/farmacologia , beta-Glucanas/metabolismo , Parede Celular/metabolismo , Cicatriz/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Glucanos/metabolismo , Lactatos/metabolismo , Moléculas com Motivos Associados a Patógenos
11.
J Vis Exp ; (157)2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32202525

RESUMO

The microbial fungus Candida albicans can undergo a change from commensal colonization to virulence that is strongly correlated with its ability to switch from yeast-form growth to hyphal growth. Cells initiating this process become adherent to surfaces as well as to each other, with the resulting development of a biofilm colony. This commonly occurs not only on mucosal tissue surfaces in yeast infections, but also on medical implants such as catheters. It is well known that biofilm cells are resistant to antifungal drugs, and that cells that shed from the biofilm can lead to dangerous systemic infections. Biofilms range from heavily translucent to opaque due to refractive heterogeneity. Therefore, fungal biofilms are difficult to study by optical microscopy. To visualize internal structural, cellular, and subcellular features, we clarify fixed intact biofilms by stepwise solvent exchange to a point of optimal refractive index matching. For C. albicans biofilms, sufficient clarification is attained with methyl salicylate (n = 1.537) to enable confocal microscopy from apex to base in 600 µm biofilms with little attenuation. In this visualization protocol we outline phase contrast refractometry, the growth of laboratory biofilms, fixation, staining, solvent exchange, the setup for confocal fluorescence microscopy, and representative results.


Assuntos
Biofilmes , Candida albicans/fisiologia , Imageamento Tridimensional , Biofilmes/crescimento & desenvolvimento , Hifas/fisiologia , Microscopia Confocal , Mutação/genética , Refratometria
12.
PLoS One ; 13(6): e0197925, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29912894

RESUMO

Candida albicans is a fungal pathogen that causes serious biofilm-based infections. Here we have asked whether surface topography may affect C. albicans biofilm formation. We tested biofilm growth of the prototypical wild-type strain SC5314 on a series of polydimethylsiloxane (PDMS) solids. The surfaces were prepared with monolayer coatings of monodisperse spherical silica particles that were fused together into a film using silica menisci. The surface topography was varied by varying the diameter of the silica particles that were used to form the film. Biofilm formation was observed to be a strong function of particle size. In the particle size range 4.0-8.0 µm, there was much more biofilm than in the size range 0.5-2.0 µm. The behavior of a clinical isolate from a clade separate from SC5314, strain p76067, showed results similar to that of SC5314. Our results suggest that topographic coatings may be a promising approach to reduce C. albicans biofilm infections.


Assuntos
Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Candida albicans/efeitos dos fármacos , Candida albicans/fisiologia , Dimetilpolisiloxanos/química , Dimetilpolisiloxanos/farmacologia , Nylons/química , Nylons/farmacologia , Dióxido de Silício/química , Propriedades de Superfície
13.
Curr Opin Microbiol ; 43: 100-107, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29414442

RESUMO

Fungal biofilms are heterogeneous, surface-associated colonies comprised of filamentous hyphae (chains of elongated cells), pseudohyphal cells, yeast-form cells, and various forms of extracellular matrix. When grown on a substratum under liquid culture medium, the microbial fungus Candida albicans forms dense biofilms that range in thickness from 100 to 600µm. Apical hyphae in the medium and invasive hyphae in the substratum may add greatly to the thickness and complexity of the biofilm. Because of the heterogeneity of the structure, and the large refractive index differences between cell walls, cytoplasm, and medium, fungal biofilms appear optically opaque. For fixed specimens that can be transferred out of an aqueous medium, refractive index matching methods provide a high degree of clarification. Confocal scanning, 2-photon scanning, or selective-plane illumination microscopy then can be used to obtain high-quality image data spanning the full thickness of the biofilm. Using refractive index matching and confocal microscopy, we have imaged many interesting features within wild-type, mutant, and engineered biofilms, including cellular phenotypes that vary with position, the effect of growth conditions, and gene expression through reporter constructs. This approach greatly expands the range of microscopical studies, allowing researchers to observe and quantify specific phenomena within medically or industrially relevant forms of microbial growth.


Assuntos
Biofilmes , Candida albicans/ultraestrutura , Fungos/fisiologia , Microscopia Confocal/métodos , Candida albicans/genética , Candida albicans/crescimento & desenvolvimento , Candida albicans/fisiologia , Fungos/crescimento & desenvolvimento , Regulação Fúngica da Expressão Gênica , Hifas/genética , Hifas/ultraestrutura
14.
Microbiol Spectr ; 5(2)2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28387175

RESUMO

We focus this article on turning a biofilm inside out. The "inside" of the biofilm comprises the individual biofilm-related phenotypes, their environmental drivers and genetic determinants, and the coordination of gene functions through transcriptional regulators. Investigators have viewed the inside of the biofilm through diverse approaches, and this article will attempt to capture the essence of many. The ultimate goal is to connect the inside to the "outside," which we view as biofilm structure, development, pharmacological attributes, and medical impact.


Assuntos
Biofilmes/crescimento & desenvolvimento , Fungos/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa