Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Science ; 385(6710): eadk0997, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39146420

RESUMO

Memories are dynamic constructs whose properties change with time and experience. The biological mechanisms underpinning these dynamics remain elusive, particularly concerning how shifts in the composition of memory-encoding neuronal ensembles influence the evolution of a memory over time. By targeting developmentally distinct subpopulations of principal neurons, we discovered that memory encoding resulted in the concurrent establishment of multiple memory traces in the mouse hippocampus. Two of these traces were instantiated in subpopulations of early- and late-born neurons and followed distinct reactivation trajectories after encoding. The divergent recruitment of these subpopulations underpinned gradual reorganization of memory ensembles and modulated memory persistence and plasticity across multiple learning episodes. Thus, our findings reveal profound and intricate relationships between ensemble dynamics and the progression of memories over time.


Assuntos
Hipocampo , Memória , Neurônios , Animais , Camundongos , Neurônios/fisiologia , Hipocampo/fisiologia , Hipocampo/citologia , Memória/fisiologia , Plasticidade Neuronal , Neurogênese , Camundongos Endogâmicos C57BL , Masculino
2.
Curr Biol ; 30(10): R430-R432, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32428470

RESUMO

Navigation relies on the brain's ability to build a cognitive map of the environment, and to use such a map to guide the animal's movements to goals. A new study proposes that the secondary motor cortex might convert the map into action.


Assuntos
Córtex Motor , Animais , Cognição , Movimento
3.
J Cell Biol ; 217(1): 211-230, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29233863

RESUMO

Local actin filament formation powers the development of the signal-receiving arbor of neurons that underlies neuronal network formation. Yet, little is known about the molecules that drive these processes and may functionally connect them to the transient calcium pulses observed in restricted areas in the forming dendritic arbor. Here we demonstrate that Cordon-Bleu (Cobl)-like, an uncharacterized protein suggested to represent a very distantly related, evolutionary ancestor of the actin nucleator Cobl, despite having only a single G-actin-binding Wiskott-Aldrich syndrome protein Homology 2 (WH2) domain, massively promoted the formation of F-actin-rich membrane ruffles of COS-7 cells and of dendritic branches of neurons. Cobl-like hereby integrates WH2 domain functions with those of the F-actin-binding protein Abp1. Cobl-like-mediated dendritic branching is dependent on Abp1 as well as on Ca2+/calmodulin (CaM) signaling and CaM association. Calcium signaling leads to a promotion of complex formation with Cobl-like's cofactor Abp1. Thus, Ca2+/CaM control of actin dynamics seems to be a much more broadly used principle in cell biology than previously thought.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Sinalização do Cálcio/fisiologia , Proteínas dos Microfilamentos/metabolismo , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Amina Oxidase (contendo Cobre)/metabolismo , Animais , Células COS , Calmodulina/metabolismo , Linhagem Celular , Chlorocebus aethiops , Células HEK293 , Humanos , Camundongos , Proteínas dos Microfilamentos/genética , Domínios Proteicos/genética , Ratos
4.
Neuron ; 85(4): 770-86, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25695271

RESUMO

Brain networks can support learning by promoting acquisition of task-relevant information or by adhering to validated rules, but the mechanisms involved are poorly understood. Upon learning, local inhibitory parvalbumin (PV)-expressing Basket cell networks can switch to opposite configurations that either favor or interfere with further learning, but how this opposite plasticity is induced and relates to distinct learning requirements has remained unclear. Here, we show that PV Basket cells consist of hitherto unrecognized subpopulations, with distinct schedules of neurogenesis, input connectivities, output target neurons, and roles in learning. Plasticity of hippocampal early-born PV neurons was recruited in rule consolidation, whereas plasticity of late-born PV neurons was recruited in new information acquisition. This involved regulation of early-born neuron plasticity specifically through excitation, and of late-born neuron plasticity specifically through inhibition. Therefore, opposite learning requirements are implemented by distinct local networks involving PV Basket cell subpopulations specifically regulated through inhibition or excitation.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Hipocampo , Aprendizagem em Labirinto/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Parvalbuminas/metabolismo , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Fatores Etários , Animais , Animais Recém-Nascidos , Diazepam/farmacologia , Embrião de Mamíferos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Moduladores GABAérgicos/farmacologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Hipocampo/citologia , Hipocampo/embriologia , Hipocampo/crescimento & desenvolvimento , Técnicas In Vitro , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Rede Nervosa/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/genética , Parvalbuminas/genética , Tempo de Reação/efeitos dos fármacos , Fatores de Tempo
5.
Trends Neurosci ; 37(10): 604-14, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25257207

RESUMO

Learning can involve formation of new synapses and loss of synapses, providing memory traces of learned skills. Recent findings suggest that these synapse rearrangements reflect assembly of task-related sub-circuits from initially broadly distributed and sparse connectivity in the brain. These local circuit remodeling processes involve rapid emergence of synapses upon learning, followed by protracted validation involving strengthening of some new synapses, and selective elimination of others. The timing of these consolidation processes can vary. Here, we review these findings, focusing on how molecular/cellular mechanisms of synapse assembly, strengthening, and elimination might interface with circuit/system mechanisms of learning and memory consolidation. An integrated understanding of these learning-related processes should provide a better basis to elucidate how experience, genetic background, and disease influence brain function.


Assuntos
Encéfalo/fisiologia , Aprendizagem/fisiologia , Memória/fisiologia , Rede Nervosa/fisiologia , Plasticidade Neuronal/fisiologia , Sinapses/fisiologia , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Humanos , Rede Nervosa/citologia , Rede Nervosa/metabolismo , Sinapses/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa