Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 235(1): 41-51, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35322882

RESUMO

We compiled hydrogen and oxygen stable isotope compositions (δ2 H and δ18 O) of leaf water from multiple biomes to examine variations with environmental drivers. Leaf water δ2 H was more closely correlated with δ2 H of xylem water or atmospheric vapour, whereas leaf water δ18 O was more closely correlated with air relative humidity. This resulted from the larger proportional range for δ2 H of meteoric waters relative to the extent of leaf water evaporative enrichment compared with δ18 O. We next expressed leaf water as isotopic enrichment above xylem water (Δ2 H and Δ18 O) to remove the impact of xylem water isotopic variation. For Δ2 H, leaf water still correlated with atmospheric vapour, whereas Δ18 O showed no such correlation. This was explained by covariance between air relative humidity and the Δ18 O of atmospheric vapour. This is consistent with a previously observed diurnal correlation between air relative humidity and the deuterium excess of atmospheric vapour across a range of ecosystems. We conclude that 2 H and 18 O in leaf water do indeed reflect the balance of environmental drivers differently; our results have implications for understanding isotopic effects associated with water cycling in terrestrial ecosystems and for inferring environmental change from isotopic biomarkers that act as proxies for leaf water.


Assuntos
Ecossistema , Água , Isótopos de Oxigênio/análise , Folhas de Planta/química , Xilema
2.
Glob Chang Biol ; 27(13): 3035-3051, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33971058

RESUMO

Seasonality is a key feature of the biosphere and the seasonal dynamics of soil carbon (C) emissions represent a fundamental mechanism regulating the terrestrial-climate interaction. We applied a microbial explicit model-CLM-Microbe-to evaluate the impacts of microbial seasonality on soil C cycling in terrestrial ecosystems. The CLM-Microbe model was validated in simulating belowground respiratory fluxes, that is, microbial respiration, root respiration, and soil respiration at the site level. On average, the CLM-Microbe model explained 72% (n = 19, p < 0.0001), 65% (n = 19, p < 0.0001), and 71% (n = 18, p < 0.0001) of the variation in microbial respiration, root respiration, and soil respiration, respectively. We then compared the model simulations of soil respiratory fluxes and soil organic C content in top 1 m between the CLM-Microbe model with (CLM-Microbe) and without (CLM-Microbe_wos) seasonal dynamics of soil microbial biomass in natural biomes. Removing soil microbial seasonality reduced model performance in simulating microbial respiration and soil respiration, but led to slight differences in simulating root respiration. Compared with the CLM-Microbe, the CLM-Microbe_wos underestimated the annual flux of microbial respiration by 0.6%-32% and annual flux of soil respiration by 0.4%-29% in natural biomes. Correspondingly, the CLM-Microbe_wos estimated higher soil organic C content in top 1 m (0.2%-7%) except for the sites in Arctic and boreal regions. Our findings suggest that soil microbial seasonality enhances soil respiratory C emissions, leading to a decline in SOC storage. An explicit representation of soil microbial seasonality represents a critical improvement for projecting soil C decomposition and reducing the uncertainties in global C cycle projection under the changing climate.


Assuntos
Ecossistema , Solo , Biomassa , Carbono , Microbiologia do Solo
3.
Musculoskelet Sci Pract ; 58: 102517, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35114505

RESUMO

BACKGROUND: Patients with severe carpal tunnel syndrome (CTS) undergo carpal tunnel release (CTR) surgery to alleviate pressure in the carpal tunnel. However, the subsequent lack of the transverse carpal ligament (TCL) causes the bowstring phenomenon of the flexor tendons and increases the potential incidence of trigger finger. OBJECTIVE: This study aimed to investigate the effects of various compressive forces on the flexor tendon and identify the appropriate force needed to mitigate the bowstring effect of those flexors. DESIGN: Cross-sectional repeated measures comparison. METHOD: Thirteen CTS patients who underwent CTR surgery were asked to flex the middle finger while applying different external compressive forces, just contact, 4N, and 8N force, over the carpal tunnel. Images of the flexor tendon within the carpal tunnel and at the metacarpal phalangeal (MCP) joint were recorded via ultrasound. RESULT: Results show that the compression force limited the volar migration of the flexor tendon under maximal voluntary contraction (MVC) conditions. Entrance angles between the flexor tendon and metacarpal bone also decreased as the external compressive force increased. CONCLUSIONS: Findings of this study may indicate that applying compression force on the carpal tunnel is useful for CTS patients and can inhibit the volar shift of the flexor digitorum superficialis (FDS) tendon after surgery, which may further prevent trigger finger.


Assuntos
Síndrome do Túnel Carpal , Síndrome do Túnel Carpal/cirurgia , Estudos Transversais , Humanos , Tendões/cirurgia , Punho , Articulação do Punho
4.
Oecologia ; 165(1): 213-23, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20652594

RESUMO

An understanding of atmospheric water vapor content and its isotopic composition is important if we are to be able to model future water vapor dynamics and their potential feedback on future climate change. Here we present diurnal and vertical patterns of water isotope ratios in forest air (δ(2)H(v) and δ(18)O(v)) not observed previously. Water vapor observed at three heights over 3 consecutive days in a coniferous forest in the Pacific Northwest of the United States, shows a stratified nocturnal structure of δ(2)H(v) and δ(18)O(v), with the most positive values consistently observed above the canopy (60 m). Differences between 0.5 m and 60 m range between 2-6‰ for δ(18)O and 20-40‰ for δ(2)H at night. Using a box model, we simulated H(2)O isotope fluxes and showed that the low to high δ(2)H(v) and δ(18)O(v) profiles can be explained by the vapor flux associated with evaporation from the forest floor and canopy transpiration. We used d-excess as a diagnostic tracer to identify processes that contribute to the diurnal variation in atmospheric moisture. Values of d-excess derived from water vapor measurements showed a repeated diel pattern, with the lowest values occurring in the early morning and the highest values occurring at midday. The isotopic composition of rain water, collected during a light rain event in the first morning of our experiment, suggested that considerable below-cloud secondary evaporation occurred during the descent of raindrops. We conclude that atmospheric entrainment appears to drive the isotopic variation of water vapor in the early morning when the convective boundary layer rapidly develops, while evapotranspiration becomes more important in the mid-afternoon as a primary moisture source of water vapor in this forest. Our results demonstrate the interplay between the effects of vegetation and boundary layer mixing under the influence of rain evaporation, which has implications for larger-scale predictions of precipitation across the terrestrial landscape.


Assuntos
Ritmo Circadiano , Deutério/análise , Vapor/análise , Árvores , Ar/análise , Mudança Climática , Noroeste dos Estados Unidos , Isótopos de Oxigênio
5.
Environ Pollut ; 248: 684-695, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30849586

RESUMO

Batoids (Chondrichthyes: Batoidea; e.g. stingrays, skates, and guitarfish) comprise more than 55% of elasmobranch taxa and represent ecologically important predators in benthic and pelagic habitats. Although overexploitation and habitat degradation are the two biggest threats to batoid populations, coastal and oceanic pollution is also a pervasive potential threat. In this systematic review, we compile published scientific literature on trace metals and persistent organic pollutants (POPs) contamination in elasmobranch species of the Batoidea superorder and present contamination patterns, exposure effects, and potential human exposure risks to most reported contaminants. We found batoids to accumulate a wide range of trace metals, including mercury (Hg), arsenic (As), lead (Pb), copper (Cu), cadmium (Cd) and zinc (Zn). Accumulation of POPs is reported for chlordanes, dichlorodiphenyltrichloroethane (DDT), polychlorinated biphenyl (PCB), dieldrin, Heptachlor epoxide, hexachlorobenzene and perfluoroalkyl substances (PFAS). Hg levels in muscle tissue were significantly different among oceanic basins and habitats, consistent with previous global assessments of Hg oceanic background levels. Some batoid species presented Hg levels higher than large pelagic teleost fishes and comparable to sharks. Ecological traits such as, bottom feeding, upper trophic position and elasmobranch-specific physiology and metabolism are discussed as potential factors associated with Hg uptake and accumulation in batoids. Some species exceeded USEPA's maximum contamination safety limits in edible tissues for Hg, As and ΣPCBs. For most trace metals and POPs, there is a lack of studies focusing on contamination levels in batoids. We recommend future research increasing reporting on POPs and trace metals besides Hg in batoids to further investigate the role of Elasmobranch as a bioindicator for marine pollution.


Assuntos
Monitoramento Ambiental/métodos , Hidrocarbonetos Clorados/análise , Metais Pesados/análise , Rajidae/metabolismo , Oligoelementos/análise , Poluentes Químicos da Água/análise , Animais , Ecossistema , Biomarcadores Ambientais , Humanos
6.
Tree Physiol ; 27(10): 1361-74, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17669727

RESUMO

We compared the carbon isotope composition of ecosystem-respired CO2 (delta13C(R)) from 11 forest ecosystems in Canada and the USA and examined differences among forest delta13C(R) responses to seasonal variations in environmental conditions from May to October 2004. Our experimental approach was based on the assumption that variation in delta13C(R) is a good proxy for short-term changes in photosynthetic discrimination and associated shifts in the integrated ecosystem-level intercellular to ambient CO2 ratio (c(i)/c(a)). We compared delta13C(R) responses for three functional groups: deciduous, boreal and coastal forests. The delta13C(R) values were well predicted for each group and the highest R2 values determined for the coastal, deciduous and boreal groups were 0.81, 0.80 and 0.56, respectively. Consistent with previous studies, the highest correlations between delta13C(R) and changes in environmental conditions were achieved when the environmental variables were averaged for 2, 3 or 4 days before delta13C(R) sample collection. The relationships between delta13C(R) and environmental conditions were consistent with leaf-level responses, and were most apparent within functional groups, providing support for our approach. However, there were differences among groups in the strength or significance, or both, of the relationships between delta13C(R) and some environmental factors. For example, vapor pressure deficit (VPD) and soil temperature were significant determinants of variation in delta13C(R) in the boreal group, whereas photosynthetic photon flux (PPF) was not; however, in the coastal group, variation in delta13C(R) was strongly correlated with changes in PPF, and there was no significant relationship with VPD. At a single site, comparisons between our delta13C(R) measurements in 2004 and published values suggested the potential application of delta13C(R) measurements to assess year-to-year variation in ecosystem physiological responses to changing environmental conditions, but showed that, in such an analysis, all environmental factors influencing carbon isotope discrimination during photosynthetic gas exchange must be considered.


Assuntos
Dióxido de Carbono/metabolismo , Ecossistema , Árvores/metabolismo , Canadá , Isótopos de Carbono , Modelos Lineares , Modelos Biológicos , Estados Unidos
7.
Oecologia ; 157(2): 197-210, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18543002

RESUMO

Leaf water (18)O enrichment (Delta(o)) influences the isotopic composition of both gas exchange and organic matter, with Delta(o) values responding to changes in atmospheric parameters. In order to examine possible influences of plant parameters on Delta(o) dynamics, we measured oxygen isotope ratios (delta(18)O) of leaf and stem water on plant species representing different life forms in Amazonia forest and pasture ecosystems. We conducted two field experiments: one in March (wet season) and another in September (dry season) 2004. In each experiment, leaf and stem samples were collected at 2-h intervals at night and hourly during the day for 50 h from eight species including upper-canopy forest trees, upper-canopy forest lianas, and lower-canopy forest trees, a C(4) pasture grass and a C(3) pasture shrub. Significant life form-related differences were detected in (18)O leaf water values. Initial modeling efforts to explain these observations over-predicted nighttime Delta(o) values by as much as 10 per thousand. Across all species, errors associated with measured values of the delta(18)O of atmospheric water vapor (delta(v)) appeared to be largely responsible for the over-predictions of nighttime Delta(o) observations. We could not eliminate collection or storage of water vapor samples as a possible error and therefore developed an alternative, plant-based method for estimating the daily average delta(v) value in the absence of direct (reliable) measurements. This approach differs from the common assumption that isotopic equilibrium exists between water vapor and precipitation water, by including transpiration-based contributions from local vegetation through (18)O measurements of bulk leaf water. Inclusion of both modified delta(v) and non-steady state features resulted in model predictions that more reliably predicted both the magnitude and temporal patterns observed in the data. The influence of life form-specific patterns of Delta(o) was incorporated through changes in the effective path length, an important but little known parameter associated with the Péclet effect.


Assuntos
Ecossistema , Oxigênio/metabolismo , Plantas/metabolismo , Água/química , Ritmo Circadiano , Umidade , Modelos Biológicos , Isótopos de Oxigênio , Folhas de Planta/metabolismo , Caules de Planta/metabolismo , Especificidade da Espécie , Temperatura , Água/metabolismo
8.
Plant Cell Environ ; 29(1): 77-94, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17086755

RESUMO

Changes in the 2H and 18O of atmospheric water vapour provide information for integrating aspects of gas exchange within forest canopies. In this study, we show that diurnal fluctuations in the oxygen isotope ratio (delta 18O) as high as 4% per hundred were observed for water vapour (delta (18)Ovp) above and within an old-growth coniferous forest in the Pacific Northwest region of the United States. Values of delta 18Ovp decreased in the morning, reached a minimum at midday, and recovered to early-morning values in the late afternoon, creating a nearly symmetrical diurnal pattern for two consecutive summer days. A mass balance budget was derived and assessed for the 18O of canopy water vapour over a 2-d period by considering the 18O-isoflux of canopy transpiration, soil evaporation and the air entering the canopy column. The budget was used to address two questions: (1) do delta 18O values of canopy water vapour reflect the biospheric influence, or are such signals swamped by atmospheric mixing? and (2) what mechanisms drive temporal variations of delta 18Ovp? Model calculations show that the entry of air into the canopy column resulted in an isotopically depleted 18O-isoflux in the morning of day 1, causing values of delta 18Ovp, to decrease. An isotopically enriched 18O-isoflux resulting from transpiration then offset this decreased delta 18Ovp later during the day. Contributions of 18O-isoflux from soil evaporation were relatively small on day 1 but were more significant on day 2, despite the small H2(16)O fluxes. From measurements of leaf water volume and sapflux, we determined the turnover time of leaf water in the needles of Douglas-fir trees as approximately 11 h at midday. Such an extended turnover time suggests that transpiration may not have occurred at the commonly assumed isotopic steady state. We tested a non-steady state model for predicting delta 18O of leaf water. Our model calculations show that assuming isotopic steady state increased isoflux of transpiration. The impact of this increase on the modelled delta 18Ovp was clearly detectable, suggesting the importance of considering isotopic non-steady state of transpiration in studies of forest 18O water balance.


Assuntos
Atmosfera/química , Oxigênio/metabolismo , Transpiração Vegetal/fisiologia , Traqueófitas/fisiologia , Árvores/fisiologia , Água/química , Ritmo Circadiano/fisiologia , Modelos Biológicos , Noroeste dos Estados Unidos , Isótopos de Oxigênio , Folhas de Planta/química , Solo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa