RESUMO
Abnormalities in renal electrolyte and water excretion may result in inappropriate salt and water retention, which facilitates the development and maintenance of hypertension, as well as acid-base and electrolyte disorders. A key mechanism by which the kidney regulates renal hemodynamics and electrolyte excretion is via tubuloglomerular feedback (TGF), an intrarenal negative feedback between tubules and arterioles. TGF is initiated by an increase of NaCl delivery at the macula densa cells. The increased NaCl activates luminal Na-K-2Cl cotransporter (NKCC2) of the macula densa cells, which leads to activation of several intracellular processes followed by the production of paracrine signals that ultimately result in a constriction of the afferent arteriole and a tonic inhibition of single nephron glomerular filtration rate. Neuronal nitric oxide (NOS1) is highly expressed in the macula densa. NOS1ß is the major splice variant and accounts for most of NO generation by the macula densa, which inhibits TGF response. Macula densa NOS1ß-mediated modulation of TGF responses plays an essential role in control of sodium excretion, volume and electrolyte hemostasis, and blood pressure. In this article, we describe the mechanisms that regulate macula densa-derived NO and their effect on TGF response in physiologic and pathologic conditions. © 2023 American Physiological Society. Compr Physiol 13:4215-4229, 2023.
Assuntos
Glomérulos Renais , Óxido Nítrico Sintase Tipo I , Cloreto de Sódio , Humanos , Pressão Sanguínea , Retroalimentação , Glomérulos Renais/fisiologia , Túbulos Renais , Óxido Nítrico , Sódio , Óxido Nítrico Sintase Tipo I/genéticaRESUMO
PURPOSE: To determine the effect of the iodinated contrast medium iodixanol on arteriolar tone in afferent and efferent arterioles of the glomerulus and the functional interactions with the major modulators of arteriolar tone, angiotensin II and nitric oxide, in mice. MATERIALS AND METHODS: Animal handling conformed to the ethics guidelines of the Office for Health and Social Matters of Berlin. Arterioles were isolated from 136 C57BL/6 mice, perfused with either vehicle solution or iodixanol (23 mg of iodine per milliliter) for 20 minutes, followed by angiotensin II administration. Fluorescence of 3-amino-4-(N-methylamino)-2',7'-difluorofluorescein (DAF-FM) and dihydroethidium (DHE) were used for quantification of nitric oxide bioavailability and superoxide concentration, respectively. Statistical analysis of time- and dose-dependent data was performed by using the nonparametric test for repeated measurements. RESULTS: With iodixanol, afferent arteriole diameters were significantly reduced from 9.2 µm to 8.3 µm; in control group, the diameters were increased from 8.7 µm to 9.3 µm (P = .008). Nitric oxide synthase inhibition augmented iodixanol-induced constriction, with diameters reduced from 9.9 µm to 5.8 µm (P < .0001). DAF-FM fluorescence increased less during iodixanol treatment and nitric oxide synthase inhibition (3.6% and 3.7% vs 10.7% in control group, P = .009 and P = .049, respectively), indicating impaired nitric oxide bioavailability. With iodixanol, DHE fluorescence ratio was increased by 12% (P < .0001). Angiotensin II responses were enhanced by iodixanol and by nitric oxide synthase inhibition after perfusion with iodixanol (3.3 µm and 4.3 µm vs 7.5 µm [control group] with 1 × 10(-6)/mol/L angiotensin II, P = .03 for both). In contrast, in efferent arterioles, neither their basal diameters nor the responses to angiotensin II were significantly affected by iodixanol. CONCLUSION: A more pronounced effect of iodixanol on afferent than on efferent arterioles may contribute to the reduction of glomerular filtration rate in contrast medium-induced acute kidney injury. Decreased nitric oxide bioavailability and increased concentration of superoxide explain the increased tone and reactivity in afferent arterioles perfused with iodixanol.
Assuntos
Arteríolas/efeitos dos fármacos , Meios de Contraste/farmacologia , Taxa de Filtração Glomerular/efeitos dos fármacos , Ácidos Tri-Iodobenzoicos/farmacologia , Análise de Variância , Angiotensina II/farmacologia , Animais , Óxidos N-Cíclicos/farmacologia , Dicarbetoxi-Di-Hidrocolidina/análogos & derivados , Dicarbetoxi-Di-Hidrocolidina/farmacologia , Etilaminas/farmacologia , Fluoresceínas/farmacologia , Glomérulos Renais/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico/metabolismo , Marcadores de Spin , Estatísticas não Paramétricas , Superóxidos/metabolismo , Vasoconstrição/efeitos dos fármacosRESUMO
BACKGROUND: Recent studies have indicated that angiotensin II (Ang II) possibly activates the nitric oxide (NO) system. We investigated the role of AT receptor subtypes (AT-R) in mediating the Ang II-induced NO release in afferent arterioles (Af) of mice. METHODS: Isolated Af of mice were perfused, and the isotonic contraction measured. Further, NO release was determined using DAF-FM, a fluorescence indicator for NO. Moreover, we qualitatively assessed the expression of AT-R at the mRNA level using reverse transcription-polymerase chain reaction (RT-PCR). RESULTS: Ang II reduced luminal diameters dose dependently (67.3 +/- 6.3% at 10(-6) mol/L). Inhibition of AT2-R with PD123.319 did not change the Ang II contractile response. AT1-R blockade with ZD7155 inhibited contraction. Stimulation of AT2-R during AT1-R inhibition with ZD7155, and preconstriction with norepinephrine (NE) had no influence on the diameter. Drug application via the perfusion pipette changed flow and pressure, and enhanced NO fluorescence by DeltaF = 4.0 +/- 0.4% (N= 14, background). Luminal application of Ang II (10(-7) mol/L) increased the NO fluorescence by DeltaF = 9.9 +/- 1.2% (N= 8). AT1-R blockade blunted the increase to background levels (DeltaF to 4.0 +/- 0.3%, N= 6, P < 0.05), but AT2-R blockade did not (8.1 +/- 0.9%, N= 9). L-NAME nearly abolished the Ang II effect on the NO fluorescence (DeltaF = 1.6 +/- 0.5% (N= 8). NE did not increase NO release beyond the background levels. RT-PCR showed expression of both AT1-R and AT2-R. CONCLUSION: The results indicate an Ang II-induced NO release in Af of mice, which is mediated by AT1-R. Thus, Ang II balances its own constrictor action in Af. This control mechanism is very important in view of high renin and angiotensin II concentration in the juxtaglomerular apparatus.