Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Mol Cell ; 77(6): 1251-1264.e9, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32023484

RESUMO

Lipid droplets (LDs) store lipids for energy and are central to cellular lipid homeostasis. The mechanisms coordinating lipid storage in LDs with cellular metabolism are unclear but relevant to obesity-related diseases. Here we utilized genome-wide screening to identify genes that modulate lipid storage in macrophages, a cell type involved in metabolic diseases. Among ∼550 identified screen hits is MLX, a basic helix-loop-helix leucine-zipper transcription factor that regulates metabolic processes. We show that MLX and glucose-sensing family members MLXIP/MondoA and MLXIPL/ChREBP bind LDs via C-terminal amphipathic helices. When LDs accumulate in cells, these transcription factors bind to LDs, reducing their availability for transcriptional activity and attenuating the response to glucose. Conversely, the absence of LDs results in hyperactivation of MLX target genes. Our findings uncover a paradigm for a lipid storage response in which binding of MLX transcription factors to LD surfaces adjusts the expression of metabolic genes to lipid storage levels.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Regulação da Expressão Gênica , Glucose/metabolismo , Gotículas Lipídicas/metabolismo , Proteoma/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/antagonistas & inibidores , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Células Cultivadas , Testes Genéticos , Humanos , Macrófagos/citologia , Macrófagos/metabolismo , Ligação Proteica , Proteoma/análise , RNA Interferente Pequeno , Transcrição Gênica
2.
Mol Cell ; 74(1): 32-44.e8, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30846318

RESUMO

Excessive levels of saturated fatty acids are toxic to cells, although the basis for this lipotoxicity remains incompletely understood. Here, we analyzed the transcriptome, lipidome, and genetic interactions of human leukemia cells exposed to palmitate. Palmitate treatment increased saturated glycerolipids, accompanied by a transcriptional stress response, including upregulation of the endoplasmic reticulum (ER) stress response. A comprehensive genome-wide short hairpin RNA (shRNA) screen identified >350 genes modulating lipotoxicity. Among previously unknown genetic modifiers of lipotoxicity, depletion of RNF213, a putative ubiquitin ligase mutated in Moyamoya vascular disease, protected cells from lipotoxicity. On a broader level, integration of our comprehensive datasets revealed that changes in di-saturated glycerolipids, but not other lipid classes, are central to lipotoxicity in this model. Consistent with this, inhibition of ER-localized glycerol-3-phosphate acyltransferase activity protected from all aspects of lipotoxicity. Identification of genes modulating the response to saturated fatty acids may reveal novel therapeutic strategies for treating metabolic diseases linked to lipotoxicity.


Assuntos
Estresse do Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/efeitos dos fármacos , Glicerídeos/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Ácido Palmítico/toxicidade , Aciltransferases/genética , Aciltransferases/metabolismo , Adenosina Trifosfatases/metabolismo , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/patologia , Estresse do Retículo Endoplasmático/genética , Regulação Enzimológica da Expressão Gênica , Células HeLa , Células Hep G2 , Humanos , Células K562 , Metabolismo dos Lipídeos/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Transcriptoma , Ubiquitina-Proteína Ligases/metabolismo
3.
Development ; 150(20)2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37306387

RESUMO

Lipid droplets (LDs), crucial regulators of lipid metabolism, accumulate during oocyte development. However, their roles in fertility remain largely unknown. During Drosophila oogenesis, LD accumulation coincides with the actin remodeling necessary for follicle development. Loss of the LD-associated Adipose Triglyceride Lipase (ATGL) disrupts both actin bundle formation and cortical actin integrity, an unusual phenotype also seen when the prostaglandin (PG) synthase Pxt is missing. Dominant genetic interactions and PG treatment of follicles indicate that ATGL acts upstream of Pxt to regulate actin remodeling. Our data suggest that ATGL releases arachidonic acid (AA) from LDs to serve as the substrate for PG synthesis. Lipidomic analysis detects AA-containing triglycerides in ovaries, and these are increased when ATGL is lost. High levels of exogenous AA block follicle development; this is enhanced by impairing LD formation and suppressed by reducing ATGL. Together, these data support the model that AA stored in LD triglycerides is released by ATGL to drive the production of PGs, which promote the actin remodeling necessary for follicle development. We speculate that this pathway is conserved across organisms to regulate oocyte development and promote fertility.


Assuntos
Proteínas de Drosophila , Prostaglandinas , Animais , Gotículas Lipídicas , Actinas , Adipogenia , Drosophila , Lipase , Peroxidases , Proteínas de Drosophila/genética
4.
Cancer Cell Int ; 23(1): 49, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36932402

RESUMO

BACKGROUND: Glioblastoma multiforme (GBM) is characterized by an unfavorable prognosis for patients affected. During standard-of-care chemotherapy using temozolomide (TMZ), tumors acquire resistance thereby causing tumor recurrence. Thus, deciphering essential molecular pathways causing TMZ resistance are of high therapeutic relevance. METHODS: Mass spectrometry based proteomics were used to study the GBM proteome. Immunohistochemistry staining of human GBM tissue for either calpain-1 or -2 was performed to locate expression of proteases. In vitro cell based assays were used to measure cell viability and survival of primary patient-derived GBM cells and established GBM cell lines after TMZ ± calpain inhibitor administration. shRNA expression knockdowns of either calpain-1 or calpain-2 were generated to study TMZ sensitivity of the specific subunits. The Comet assay and É£H2AX signal measurements were performed in order to assess the DNA damage amount and recognition. Finally, quantitative real-time PCR of target proteins was applied to differentiate between transcriptional and post-translational regulation. RESULTS: Calcium-dependent calpain proteases, in particular calpain-2, are more abundant in glioblastoma compared to normal brain and increased in patient-matched initial and recurrent glioblastomas. On the cellular level, pharmacological calpain inhibition increased the sensitivities of primary glioblastoma cells towards TMZ. A genetic knockdown of calpain-2 in U251 cells led to increased caspase-3 cleavage and sensitivity to neocarzinostatin, which rapidly induces DNA strand breakage. We hypothesize that calpain-2 causes desensitization of tumor cells against TMZ by preventing strong DNA damage and subsequent apoptosis via post-translational TP53 inhibition. Indeed, proteomic comparison of U251 control vs. U251 calpain-2 knockdown cells highlights perturbed levels of numerous proteins involved in DNA damage response and downstream pathways affecting TP53 and NF-κB signaling. TP53 showed increased protein abundance, but no transcriptional regulation. CONCLUSION: TMZ-induced cell death in the presence of calpain-2 expression appears to favor DNA repair and promote cell survival. We conclude from our experiments that calpain-2 expression represents a proteomic mode that is associated with higher resistance via "priming" GBM cells to TMZ chemotherapy. Thus, calpain-2 could serve as a prognostic factor for GBM outcome.

5.
Proc Natl Acad Sci U S A ; 117(19): 10565-10574, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32345721

RESUMO

Numerous mutations that impair retrograde membrane trafficking between endosomes and the Golgi apparatus lead to neurodegenerative diseases. For example, mutations in the endosomal retromer complex are implicated in Alzheimer's and Parkinson's diseases, and mutations of the Golgi-associated retrograde protein (GARP) complex cause progressive cerebello-cerebral atrophy type 2 (PCCA2). However, how these mutations cause neurodegeneration is unknown. GARP mutations in yeast, including one causing PCCA2, result in sphingolipid abnormalities and impaired cell growth that are corrected by treatment with myriocin, a sphingolipid synthesis inhibitor, suggesting that alterations in sphingolipid metabolism contribute to cell dysfunction and death. Here we tested this hypothesis in wobbler mice, a murine model with a homozygous partial loss-of-function mutation in Vps54 (GARP protein) that causes motor neuron disease. Cytotoxic sphingoid long-chain bases accumulated in embryonic fibroblasts and spinal cords from wobbler mice. Remarkably, chronic treatment of wobbler mice with myriocin markedly improved their wellness scores, grip strength, neuropathology, and survival. Proteomic analyses of wobbler fibroblasts revealed extensive missorting of lysosomal proteins, including sphingolipid catabolism enzymes, to the Golgi compartment, which may contribute to the sphingolipid abnormalities. Our findings establish that altered sphingolipid metabolism due to GARP mutations contributes to neurodegeneration and suggest that inhibiting sphingolipid synthesis might provide a useful strategy for treating these disorders.


Assuntos
Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Esfingolipídeos/metabolismo , Animais , Modelos Animais de Doenças , Endossomos/metabolismo , Ácidos Graxos Monoinsaturados/farmacologia , Feminino , Fibroblastos/metabolismo , Complexo de Golgi/metabolismo , Masculino , Camundongos , Camundongos Mutantes Neurológicos , Doença dos Neurônios Motores/genética , Doença dos Neurônios Motores/metabolismo , Doença dos Neurônios Motores/patologia , Neurônios Motores/metabolismo , Células-Tronco Embrionárias Murinas , Mutação , Malformações do Sistema Nervoso/metabolismo , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/fisiopatologia , Transporte Proteico , Proteômica , Proteínas de Transporte Vesicular/metabolismo
6.
Hepatology ; 70(6): 1972-1985, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31081165

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is characterized by excess lipid accumulation in hepatocytes and represents a huge public health problem owing to its propensity to progress to nonalcoholic steatohepatitis, fibrosis, and liver failure. The lipids stored in hepatic steatosis (HS) are primarily triglycerides (TGs) synthesized by two acyl-CoA:diacylglycerol acyltransferase (DGAT) enzymes. Either DGAT1 or DGAT2 catalyzes this reaction, and these enzymes have been suggested to differentially utilize exogenous or endogenously synthesized fatty acids, respectively. DGAT2 has been linked to storage of fatty acids from de novo lipogenesis, a process increased in NAFLD. However, whether DGAT2 is more responsible for lipid accumulation in NAFLD and progression to fibrosis is currently unknown. Also, it is unresolved whether DGAT2 can be safely inhibited as a therapy for NAFLD. Here, we induced NAFLD-like disease in mice by feeding a diet rich in fructose, saturated fat, and cholesterol and found that hepatocyte-specific Dgat2 deficiency reduced expression of de novo lipogenesis genes and lowered liver TGs by ~70%. Importantly, the reduction in steatosis was not accompanied by increased inflammation or fibrosis, and insulin and glucose metabolism were unchanged. Conclusion: This study suggests that hepatic DGAT2 deficiency successfully reduces diet-induced HS and supports development of DGAT2 inhibitors as a therapeutic strategy for treating NAFLD and preventing downstream consequences.


Assuntos
Diacilglicerol O-Aciltransferase/fisiologia , Hepatite/etiologia , Hepatócitos/enzimologia , Cirrose Hepática Experimental/etiologia , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Animais , Diacilglicerol O-Aciltransferase/antagonistas & inibidores , Diacilglicerol O-Aciltransferase/deficiência , Gorduras na Dieta/administração & dosagem , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Triglicerídeos/metabolismo
7.
Mol Cell Proteomics ; 17(5): 836-849, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29414761

RESUMO

Obesity is tightly linked to hepatic steatosis and insulin resistance. One feature of this association is the paradox of selective insulin resistance: insulin fails to suppress hepatic gluconeogenesis but activates lipid synthesis in the liver. How lipid accumulation interferes selectively with some branches of hepatic insulin signaling is not well understood. Here we provide a resource, based on unbiased approaches and established in a simple cell culture system, to enable investigations of the phenomenon of selective insulin resistance. We analyzed the phosphoproteome of insulin-treated human hepatoma cells and identified sites in which palmitate selectively impairs insulin signaling. As an example, we show that palmitate interferes with insulin signaling to FoxO1, a key transcription factor regulating gluconeogenesis, and identify altered FoxO1 cellular compartmentalization as a contributing mechanism for selective insulin resistance. This model system, together with our comprehensive characterization of the proteome, phosphoproteome, and lipidome changes in response to palmitate treatment, provides a novel and useful resource for unraveling the mechanisms underlying selective insulin resistance.


Assuntos
Hepatócitos/patologia , Resistência à Insulina , Palmitatos/toxicidade , Sequência de Aminoácidos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Proteína Forkhead Box O1/metabolismo , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Insulina/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Fosfoproteínas/metabolismo , Fosforilação/efeitos dos fármacos , Proteoma/metabolismo , Proteômica , Transdução de Sinais
8.
Mol Cell Proteomics ; 15(6): 2203-13, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27087653

RESUMO

Dysregulated proteolysis represents a hallmark of numerous diseases. In recent years, increasing number of studies has begun looking at the protein termini in hope to unveil the physiological and pathological functions of proteases in clinical research. However, the availability of cryopreserved tissue specimens is often limited. Alternatively, formalin-fixed, paraffin-embedded (FFPE) tissues offer an invaluable resource for clinical research. Pathologically relevant tissues are often stored as FFPE, which represent the most abundant resource of archived human specimens. In this study, we established a robust workflow to investigate native and protease-generated protein N termini from FFPE specimens. We demonstrate comparable N-terminomes of cryopreserved and formalin-fixed tissue, thereby showing that formalin fixation/paraffin embedment does not proteolytically damage proteins. Accordingly, FFPE specimens are fully amenable to N-terminal analysis. Moreover, we demonstrate feasibility of FFPE-degradomics in a quantitative N-terminomic study of FFPE liver specimens from cathepsin L deficient or wild-type mice. Using a machine learning approach in combination with the previously determined cathepsin L specificity, we successfully identify a number of potential cathepsin L cleavage sites. Our study establishes FFPE specimens as a valuable alternative to cryopreserved tissues for degradomic studies.


Assuntos
Fígado/metabolismo , Peptídeo Hidrolases/metabolismo , Proteínas/química , Proteômica/métodos , Animais , Cromatografia Líquida , Criopreservação , Aprendizado de Máquina , Camundongos , Inclusão em Parafina , Proteólise , Espectrometria de Massas em Tandem , Fixação de Tecidos
9.
J Proteome Res ; 15(8): 2812-25, 2016 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-27378031

RESUMO

Pupylation is a bacterial ubiquitin-like protein modification pathway, which results in the attachment of the small protein Pup to specific lysine residues of cellular targets. Pup was shown to serve as a degradation signal, directing proteins toward the bacterial proteasome for turnover. Recently, it was hypothesized that pupylation and proteasomal protein degradation support the survival of Mycobacterium smegmatis (Msm) during nitrogen starvation by supplying recycled amino acids. In the present study we generated a Pup deletion strain to investigate the influence of pupylation on Msm proteome in the absence of nitrogen sources. Quantitative proteomic analyses revealed a relatively low impact of Pup on MsmΔpup proteome immediately after exposure to growth medium lacking nitrogen. Less than 5.4% of the proteins displayed altered cellular levels when compared to Msm wild type. In contrast, post 24 h of nitrogen starvation 501 proteins (41% of the total quantified proteome) of Msm pup deletion strain showed significant changes in abundance. Noteworthy, important players involved in nitrogen assimilation were significantly affected in MsmΔpup. Furthermore, we quantified pupylated proteins of nitrogen-starved Msm to gain more detailed insights in the role of pupylation in surviving and overcoming the lack of nitrogen.


Assuntos
Proteínas de Bactérias/metabolismo , Mycobacterium smegmatis/metabolismo , Nitrogênio/deficiência , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteômica , Ubiquitinas/metabolismo , Aminoácidos/metabolismo , Proteólise , Proteoma/metabolismo
10.
BMC Cancer ; 16: 195, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26951071

RESUMO

BACKGROUND: Ampullary cancer is a relatively rare form of cancer and usually treated by pancreatoduodenectomy, followed by adjuvant therapy. The intestinal subtype is associated with markedly improved prognosis after resection. At present, only few cell lines are available for in vitro studies of ampullary cancer and they have not been collectively characterized. METHODS: We characterize five ampullary cancer cell lines by subtype maker expression, epithelial-mesenchymal transition (EMT) features, growth and invasion, drug sensitivity and response to cancer-associated fibroblast conditioned medium (CAF-CM). RESULTS: On the basis of EMT features, subtype marker expression, growth, invasion and drug sensitivity three types of cell lines could be distinguished: mesenchymal-like, pancreatobiliary-like and intestinal-like. Heterogeneous effects from the cell lines in response to CAF-CM, such as different growth rates, induction of EMT markers as well as suppression of intestinal differentiation markers were observed. In addition, proteomic analysis showed a clear difference in intestinal-like cell line from other cell lines. CONCLUSION: Most of the available AMPAC cell lines seem to reflect a poorly differentiated pancreatobiliary or mesenchymal-like phenotype, which is consistent to their origin. We suggest that the most appropriate cell line model for intestinal-like AMPAC is the SNU869, while others seem to reflect aggressive AMPAC subtypes.


Assuntos
Ampola Hepatopancreática/metabolismo , Ampola Hepatopancreática/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Neoplasias/metabolismo , Neoplasias/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , Feminino , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Metástase Neoplásica , Estadiamento de Neoplasias , Neoplasias/mortalidade , Neoplasias/terapia , Prognóstico , Proteoma , Carga Tumoral
11.
J Proteome Res ; 13(11): 4497-504, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25204196

RESUMO

Carboxypeptidases are important mediators of cellular behavior. Through C-terminal truncations, they alter protein functionality and participate in proteome turnover. Similarly, carboxypeptidases shape the human peptidome by targeting neuroendocrine and vasoactive peptides, thereby regulating signaling pathways in the nervous and cardiovascular systems as well as in embryonic development. Carboxypeptidases are widely connected to various pathological processes such as carcinogenesis and neurodegenerative and cardiovascular diseases. The repertoire of carboxypeptidase in vivo substrates still remains poorly defined, largely due to the lack of suitable experimental approaches. Understanding the precise role of carboxypeptidases is pivotal in the future development of diagnostic/prognostic markers in such diseases. To date, very little attention has been paid to the implication of carboxypeptidases in shaping the proteome as well as the peptidome. This review focuses on the patho-physiological function of carboxypeptidases and highlights the approaches by which proteomics-based technologies can be applied to characterize carboxypeptidases and to quantify the differential regulation of proteins by carboxypeptidases in a proteome-wide manner.


Assuntos
Carboxipeptidases/metabolismo , Sistema Cardiovascular/metabolismo , Sistema Nervoso/metabolismo , Proteômica/métodos , Transdução de Sinais/fisiologia , Humanos , Proteômica/tendências , Transdução de Sinais/genética
12.
Nat Cell Biol ; 25(8): 1101-1110, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37443287

RESUMO

Lipid droplets (LDs) are crucial organelles for energy storage and lipid homeostasis. Autophagy of LDs is an important pathway for their catabolism, but the molecular mechanisms mediating LD degradation by selective autophagy (lipophagy) are unknown. Here we identify spartin as a receptor localizing to LDs and interacting with core autophagy machinery, and we show that spartin is required to deliver LDs to lysosomes for triglyceride mobilization. Mutations in SPART (encoding spartin) lead to Troyer syndrome, a form of complex hereditary spastic paraplegia1. Interfering with spartin function in cultured human neurons or murine brain neurons leads to LD and triglyceride accumulation. Our identification of spartin as a lipophagy receptor, thus, suggests that impaired LD turnover contributes to Troyer syndrome development.


Assuntos
Paraplegia Espástica Hereditária , Camundongos , Humanos , Animais , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/metabolismo , Gotículas Lipídicas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Transporte/metabolismo , Autofagia , Triglicerídeos/metabolismo , Metabolismo dos Lipídeos/fisiologia
13.
Cell Rep ; 42(9): 113023, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37691145

RESUMO

Ferroptosis is a form of regulated cell death with roles in degenerative diseases and cancer. Excessive iron-catalyzed peroxidation of membrane phospholipids, especially those containing the polyunsaturated fatty acid arachidonic acid (AA), is central in driving ferroptosis. Here, we reveal that an understudied Golgi-resident scaffold protein, MMD, promotes susceptibility to ferroptosis in ovarian and renal carcinoma cells in an ACSL4- and MBOAT7-dependent manner. Mechanistically, MMD physically interacts with both ACSL4 and MBOAT7, two enzymes that catalyze sequential steps to incorporate AA in phosphatidylinositol (PI) lipids. Thus, MMD increases the flux of AA into PI, resulting in heightened cellular levels of AA-PI and other AA-containing phospholipid species. This molecular mechanism points to a pro-ferroptotic role for MBOAT7 and AA-PI, with potential therapeutic implications, and reveals that MMD is an important regulator of cellular lipid metabolism.


Assuntos
Ferroptose , Fosfatidilinositóis , Linhagem Celular , Ácidos Graxos Insaturados , Fosfatidilinositóis/metabolismo , Fosfolipídeos/metabolismo , Humanos
14.
bioRxiv ; 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36865221

RESUMO

Cellular exposure to free fatty acids (FFA) is implicated in the pathogenesis of obesity-associated diseases. However, studies to date have assumed that a few select FFAs are representative of broad structural categories, and there are no scalable approaches to comprehensively assess the biological processes induced by exposure to diverse FFAs circulating in human plasma. Furthermore, assessing how these FFA- mediated processes interact with genetic risk for disease remains elusive. Here we report the design and implementation of FALCON (Fatty Acid Library for Comprehensive ONtologies) as an unbiased, scalable and multimodal interrogation of 61 structurally diverse FFAs. We identified a subset of lipotoxic monounsaturated fatty acids (MUFAs) with a distinct lipidomic profile associated with decreased membrane fluidity. Furthermore, we developed a new approach to prioritize genes that reflect the combined effects of exposure to harmful FFAs and genetic risk for type 2 diabetes (T2D). Importantly, we found that c-MAF inducing protein (CMIP) protects cells from exposure to FFAs by modulating Akt signaling and we validated the role of CMIP in human pancreatic beta cells. In sum, FALCON empowers the study of fundamental FFA biology and offers an integrative approach to identify much needed targets for diverse diseases associated with disordered FFA metabolism. Highlights: FALCON (Fatty Acid Library for Comprehensive ONtologies) enables multimodal profiling of 61 free fatty acids (FFAs) to reveal 5 FFA clusters with distinct biological effectsFALCON is applicable to many and diverse cell typesA subset of monounsaturated FAs (MUFAs) equally or more toxic than canonical lipotoxic saturated FAs (SFAs) leads to decreased membrane fluidityNew approach prioritizes genes that represent the combined effects of environmental (FFA) exposure and genetic risk for diseaseC-Maf inducing protein (CMIP) is identified as a suppressor of FFA-induced lipotoxicity via Akt-mediated signaling.

15.
Cell Metab ; 35(5): 887-905.e11, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37075753

RESUMO

Cellular exposure to free fatty acids (FFAs) is implicated in the pathogenesis of obesity-associated diseases. However, there are no scalable approaches to comprehensively assess the diverse FFAs circulating in human plasma. Furthermore, assessing how FFA-mediated processes interact with genetic risk for disease remains elusive. Here, we report the design and implementation of fatty acid library for comprehensive ontologies (FALCON), an unbiased, scalable, and multimodal interrogation of 61 structurally diverse FFAs. We identified a subset of lipotoxic monounsaturated fatty acids associated with decreased membrane fluidity. Furthermore, we prioritized genes that reflect the combined effects of harmful FFA exposure and genetic risk for type 2 diabetes (T2D). We found that c-MAF-inducing protein (CMIP) protects cells from FFA exposure by modulating Akt signaling. In sum, FALCON empowers the study of fundamental FFA biology and offers an integrative approach to identify much needed targets for diverse diseases associated with disordered FFA metabolism.


Assuntos
Diabetes Mellitus Tipo 2 , Ácidos Graxos não Esterificados , Humanos , Ácidos Graxos não Esterificados/metabolismo , Ácidos Graxos , Transdução de Sinais , Biologia
16.
Nat Cell Biol ; 24(9): 1364-1377, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36050470

RESUMO

Pathways localizing proteins to their sites of action are essential for eukaryotic cell organization and function. Although mechanisms of protein targeting to many organelles have been defined, how proteins, such as metabolic enzymes, target from the endoplasmic reticulum (ER) to cellular lipid droplets (LDs) is poorly understood. Here we identify two distinct pathways for ER-to-LD protein targeting: early targeting at LD formation sites during formation, and late targeting to mature LDs after their formation. Using systematic, unbiased approaches in Drosophila cells, we identified specific membrane-fusion machinery, including regulators, a tether and SNARE proteins, that are required for the late targeting pathway. Components of this fusion machinery localize to LD-ER interfaces and organize at ER exit sites. We identified multiple cargoes for early and late ER-to-LD targeting pathways. Our findings provide a model for how proteins target to LDs from the ER either during LD formation or by protein-catalysed formation of membrane bridges.


Assuntos
Retículo Endoplasmático , Gotículas Lipídicas , Animais , Drosophila/metabolismo , Retículo Endoplasmático/metabolismo , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos , Transporte Proteico , Proteínas SNARE/metabolismo
17.
Cell Rep ; 33(6): 108378, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33176155

RESUMO

Protein degradation is mediated by an expansive and complex network of protein modification and degradation enzymes. Matching degradation enzymes with their targets and determining globally which proteins are degraded by the proteasome or lysosome/vacuole have been a major challenge. Furthermore, an integrated view of protein degradation for cellular pathways has been lacking. Here, we present an analytical platform that combines systematic gene deletions with quantitative measures of protein turnover to deconvolve protein degradation pathways for Saccharomyces cerevisiae. The resulting turnover map (T-MAP) reveals target candidates of nearly all E2 and E3 ubiquitin ligases and identifies the primary degradation routes for most proteins. We further mined this T-MAP to identify new substrates of ER-associated degradation (ERAD) involved in sterol biosynthesis and to uncover regulatory nodes for sphingolipid biosynthesis. The T-MAP approach should be broadly applicable to the study of other cellular processes, including mammalian systems.


Assuntos
Proteólise , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo
18.
Dev Cell ; 51(5): 551-563.e7, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31708432

RESUMO

Lipid droplets (LDs) originate from the endoplasmic reticulum (ER) to store triacylglycerol (TG) and cholesterol esters. The ER protein seipin was shown to localize to ER-LD contacts soon after LDs form, but what determines the sites of initial LD biogenesis in the ER is unknown. Here, we identify TMEM159, now re-named lipid droplet assembly factor 1 (LDAF1), as an interaction partner of seipin. Together, LDAF1 and seipin form an ∼600 kDa oligomeric complex that copurifies with TG. LDs form at LDAF1-seipin complexes, and re-localization of LDAF1 to the plasma membrane co-recruits seipin and redirects LD formation to these sites. Once LDs form, LDAF1 dissociates from seipin and moves to the LD surface. In the absence of LDAF1, LDs form only at significantly higher cellular TG concentrations. Our data suggest that the LDAF1-seipin complex is the core protein machinery that facilitates LD biogenesis and determines the sites of their formation in the ER.


Assuntos
Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Gotículas Lipídicas/metabolismo , Proteínas de Membrana/metabolismo , Linhagem Celular Tumoral , Retículo Endoplasmático/metabolismo , Células HEK293 , Humanos , Ligação Proteica , Triglicerídeos/metabolismo
19.
Mol Biol Cell ; 29(17): 2045-2054, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29949452

RESUMO

Rab GTPases recruit peripheral membrane proteins and can define organelle identity. Rab18 localizes to the endoplasmic reticulum (ER) but also to lipid droplets (LDs), where it has been implicated in effector protein recruitment and in defining LD identity. Here, we studied Rab18 localization and function in a human mammary carcinoma cell line. Rab18 localized to the ER and to LD membranes on LD induction, with the latter depending on the Rab18 activation state. In cells lacking Rab18, LDs were modestly reduced in size and numbers, but we found little evidence for Rab18 function in LD formation, LD turnover on cell starvation, or the targeting of several proteins to LDs. We conclude that Rab18 is not a general, necessary component of the protein machinery involved in LD biogenesis or turnover.


Assuntos
Neoplasias da Mama/metabolismo , Gotículas Lipídicas/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Sequência de Bases , Linhagem Celular Tumoral , Retículo Endoplasmático/metabolismo , Feminino , Deleção de Genes , Humanos , Transporte Proteico , Triglicerídeos/metabolismo
20.
J Cell Biol ; 217(12): 4080-4091, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30327422

RESUMO

Metabolic energy is stored in cells primarily as triacylglycerols in lipid droplets (LDs), and LD dysregulation leads to metabolic diseases. The formation of monolayer-bound LDs from the endoplasmic reticulum (ER) bilayer is poorly understood, but the ER protein seipin is essential to this process. In this study, we report a cryo-electron microscopy structure and functional characterization of Drosophila melanogaster seipin. The structure reveals a ring-shaped dodecamer with the luminal domain of each monomer resolved at ∼4.0 Å. Each luminal domain monomer exhibits two distinctive features: a hydrophobic helix (HH) positioned toward the ER bilayer and a ß-sandwich domain with structural similarity to lipid-binding proteins. This structure and our functional testing in cells suggest a model in which seipin oligomers initially detect forming LDs in the ER via HHs and subsequently act as membrane anchors to enable lipid transfer and LD growth.


Assuntos
Proteínas de Drosophila , Subunidades gama da Proteína de Ligação ao GTP , Gotículas Lipídicas , Modelos Biológicos , Modelos Moleculares , Animais , Microscopia Crioeletrônica , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Retículo Endoplasmático/química , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Subunidades gama da Proteína de Ligação ao GTP/química , Subunidades gama da Proteína de Ligação ao GTP/genética , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Gotículas Lipídicas/metabolismo , Gotículas Lipídicas/ultraestrutura , Domínios Proteicos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa