Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 895: 165146, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37385488

RESUMO

This study investigates the microplastics (MPs) pollution of the lacustrine ecosystems of Tamil Nadu, South India. It examines the seasonal distribution, characteristics and morphology of MPs and assesses the risk posed by MPs pollution. MPs abundance in the 39 rural and urban lakes studied varies from 16 ± 2.69 to 118.17 ± 22.17 items/L (water) and 19.50 ± 4.75 to 156.23 ± 36.41 items/kg (sediment). The water and sediment of urban lakes show average MPs abundances of 88.06 items/L and 115.24 items/kg respectively, while the rural lakes exhibit average MPs abundances of 42.98 items/L and 53.29 items/kg. The results demonstrate that study areas with more residential and urban centers with higher population density and larger discharge of sewage have greater MP abundance. Urban zones have greater MP diversity integrated index (MPDII = 0.73) than rural zones (MPDII = 0.59). Fibres are the dominant group and polyethylene and polypropylene are the most commonly found polymers, possibly gaining entry through land-based plastic litter and urban activities in this region. The weathering index values, 50 % of MPs exhibit high degree of oxidation (WI >0.31) with an age of >10 years. SEM-EDAX results reveal that the weathered MPs from urban lakes have a wider variety of metal elements (Al, Cr, Mn, Co, Ni, Cu, Zn, As, Sr, Hg, Pb and Cd) than those from rural lakes (Na, Cl, Si, Mg, Al, Cu). Though PLI shows low risk (<10) in terms of abundance, PHI reflects pollution status III (10-100) and IV (100-1000) in rural areas and IV and V (>1000) in urban areas based on the toxicity score of the polymer. Ecological risk assessment shows minor risks (<150) at present. The assessment indicates the risk posed by the MPs to the lakes studied and emphasizes the necessity for best MP management practices in future.

2.
Sci Total Environ ; 861: 160572, 2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36455723

RESUMO

Estuaries are transition zones between freshwater and seawater. There are only few studies on microplastic (MPs) pollution in estuaries. In this study, investigating the spatiotemporal variations of MPs in water, sediment and biota samples of 19 estuaries in Tamil Nadu, India, we assessed the chemical and human exposure risks of MPs. MPs extracted by digestion and density separation and characterized them using microscope, Fourier transform infrared spectroscopy and scanning electron microscopy with energy dispersive analysis of X-rays. MP abundancesin summer and monsoon range from 31.7 ± 3.8 to 154.7 ± 4.2 items/L in water and 51.7 ± 3.6 to 171.4 ± 9.1 items/kg in sediment. Highest MPs abundance is found in water and sediment of the urbanized Adayar estuary. MP levels are higher in monsoon than in summer (P < 0.05) due to the discharge of wastewater via storm water outlets. More small-size MPs are found in summer (<0.5-1 mm) while monsoon has a greater diversity of MP polymers (MPDII: 0.81). MP abundance in fish varies from 0.01 ± 0.003 to 0.15 ± 0.03 items/g, and in shellfish from 0.75 ± 0.12 to 9.7 ± 0.28 items/g. In fish, more MPs are found in intestine than in gill or muscle. Shell fishes contain more MPs than fishes. In all the matrices, fibers of different sizes, and polymers of polyethylene and polypropylene are commonly found. An average local person is likely to ingest 781 items of MPs via fish and 2809 items via shellfish annually. Polymer hazard index shows hazard levels of IV to V indicating the serious MP pollution trend, which poses a risk to the biota. In conclusion, MPs observed in this study show that estuaries are a major pathway for land-derived plastics to reach the ocean. The results will help implement remedial/clean-up measures for the estuary for better ecosystem conservation.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Humanos , Microplásticos/análise , Plásticos/análise , Ecossistema , Índia , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Polímeros , Peixes , Água/análise
3.
Mar Pollut Bull ; 192: 115114, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37276709

RESUMO

We investigated spatiotemporal variations of microplastics (MPs) in Coromandel Coast, Palk Bay, Gulf of Mannar, and West Coast of Tamil Nadu, India. MPs abundance varies from 37 ± 1.52 to 189 ± 9.02 items/kg in sediment and 23 ± 15.25 to 155.25 ± 4.16 items/L in water. Highest abundance in monsoon by riverine inflow transports plastic waste to the ocean. MPs sizes 0.5-1 mm are dominant in summer with 16 polymers, while 3-4 mm dominates the monsoon with 23 polymers. Carbonyl Index shows high MP oxidation (>0.31), unrelated to spatiotemporal changes. SEM-EDAX shows weathered MPs carrying hazardous metals. High MP diversity (MPDII = 0.77) of Coromandel Coast points to many sources of pollution and the need for immediate control measures. Pollution load values indicate low degree of MP pollution (<10), polymer hazard index shows level III (10-100) and IV (100-1000), and ecological risk assessment shows minor risks (<150) at present.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos , Índia , Estações do Ano , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Polímeros , Sedimentos Geológicos
4.
Environ Pollut ; 298: 118848, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35032604

RESUMO

Microplastics (MPs; particles <5 mm) are widely distributed in various habitats from the land to the oceans. They have even reached the remotest of places, including the deep seas and Polar Regions. Although research on MPs pollution in the marine environment has received widespread attention in recent years, the distribution, sources and ecological risks of MPs in coastal areas remain unclear. This study assessed the abundance, characteristics, sources and ecological risk of MPs in surface waters and sediment of the mainland coast and four island groups comprising the coral reef environment of the Gulf of Mannar (GoM), southeast India. Mean MPs abundance across all 95 sampling sites ranged from 28.4 to 126.6 items L-1 in water and from 31.4 to 137.6 items kg-1 in sediment. MP fibers <2 mm dominated the water, while fragments >3 mm were predominant in sediments. Polyethylene (PE) and polypropylene (PP) were the most common polymers in both matrices. The major proportion of MPs in the GoM derived from land-based sources, with distance to the mainland, coastal population density and improper handling of solid waste being the main factors influencing the abundance of MPs. Polymer Hazard Index (PHI), Pollution Load Index (PLI) and Potential Ecological Risk Index (PERI) were used to assess current levels of MPs. While the GoM has high PHI values (>1000) resulting from MPs with high hazard scores (e.g. polyamide, polystyrene, polyvinyl chloride), the PLI values (1.46 and 1.51) indicate low MPs pollution levels in GoM waters and sediments, and the PERI values (31.7 and 24.4) indicate that this represents a minor ecological risk. The results from the current study enhance our understanding of the characteristics, sources, and associated environmental risks of MPs to marine ecosystems. This data may provide a baseline for future monitoring and the formulation of environmental policy.


Assuntos
Microplásticos , Poluentes Químicos da Água , Recifes de Corais , Ecossistema , Monitoramento Ambiental , Sedimentos Geológicos , Índia , Plásticos , Poluentes Químicos da Água/análise
5.
Sci Total Environ ; 820: 153337, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35077792

RESUMO

This study investigated the spatial and vertical distribution of microplastics (MPs) in the water and sediment samples collected from different locations in Kodaikanal Lake, a very popular tourist location. The lake provides water to placesdownstream. MPs are found in the surface water, surface sediment and core sediment, with their respective values of abundance being 24.42 ± 3.22 items/ l, 28.31 ± 5.29 items/ kg, and 25.91 ± 7.11 items/ kg. Spatially, abundance, colour, type and size of MPs vary in the samples of surface water and sediment. The highest levels of MPs are found in the lakes' outlet region. MPs detected are primarily fibres and fragments 3-5 mm in size with PE and PP being the predominant polymers. Seven sampling points were selected to investigate the vertical distribution of MPs. In the core sediment, the abundance and size of MPs decrease with depth. This probably indicates the presence of more MPs in the recent sediment. The core sediment is dominated by sand silt clay fractions, which facilitates potential downward infiltration of fine MPs. SEM images of MPs reveal that the degree of weathering increases with depth, and EDAX shows that smooth MP surface displays a lesser adhesion ability than the rough surface. Plastic wastes generated by tourism are the important source of MPs in the lake. The lake has high PHI values (>1000) due to MPs with high hazard score polymers (PS and PEU), whereas the PLI values (1.33) indicate low level of MP pollution representing a minor ecological risk. The MP level in Kodaikanal Lake is influenced by the lake's hydrology and the sources of pollution. Although the impacts of MP pollution on the health and functioning of the environment is uncertain, observing, understanding and halting of further MP contamination in the Kodaikanal Lakes is important.


Assuntos
Microplásticos , Poluentes Químicos da Água , Ecossistema , Monitoramento Ambiental/métodos , Sedimentos Geológicos , Lagos , Plásticos , Poluentes Químicos da Água/análise
6.
Mar Pollut Bull ; 171: 112678, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34242958

RESUMO

This study investigated the microplastic (MPs) contamination of the mussels, P. viridis and P. perna of different sizes, and their environment viz. water and sediment. MPs were recovered from the soft tissues of both species. The mean abundance of MPs ranges from 0.87 ± 0.55 to 10.02 ± 4.15 items/individual; 0.1 ± 0.03 to 2.05 ± 0.33 items/g; 31.57 ± 7.63 to 59.25 ± 14.32 items/l in water, and 79.54 ± 18.66 to 108 ± 40.36 items/kg in sediment. Smaller mussels (3-6 cm) are capable of ingesting higher quantities of MPs per gram of tissue weight, and the rate of MP uptake decreases when the mussels grow in size. These might be due to the faster filtration rate in smaller mussels. MPs of fiber type and blue color in the size range of 500 µm to 1 mm are predominant in mussels. Eleven different polymeric groups were identified, of which PE is the most common, followed by PP. The distribution patterns of MP abundance, shape, size, color, and polymer in mussels more closely resemble those in water. There is no significant difference in MP quantities between P. perna and P. viridis (p > 0.05). FTIR-ATR spectroscopy and SEM analysis show that most of the MPs have been strongly weathered. EDAX analysis detects heavy metals like As, Ni, Fe, Zn, and Cd associated with MPs. This study shows that the MPs contents of both the mussel species are transferred from seawater to their edible meat. This study again proved that mussels can act as bio indicator of MPs pollution.


Assuntos
Perna (Organismo) , Poluentes Químicos da Água , Animais , Monitoramento Ambiental , Microplásticos , Plásticos , Poluentes Químicos da Água/análise
7.
Mar Pollut Bull ; 165: 112124, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33652256

RESUMO

Reduction in the impact of human-induced factors is capable of enhancing the environmental health. In view of COVID-19 pandemic, lockdowns were imposed in India. Travel, fishing, tourism and religious activities were halted, while domestic and industrial activities were restricted. Comparison of the pre- and post-lockdown data shows that water parameters such as turbidity, nutrient concentration and microbial levels have come down from pre- to post-lockdown period, and parameters such as dissolved oxygen levels, phytoplankton and fish densities have improved. The concentration of macroplastics has also dropped from the range of 138 ± 4.12 and 616 ± 12.48 items/100 m2 to 63 ± 3.92 and 347 ± 8.06 items/100 m2. Fish density in the reef areas has increased from 406 no. 250 m-2 to 510 no. 250 m-2. The study allows an insight into the benefits of effective enforcement of various eco-protection regulations and proper management of the marine ecosystems to revive their health for biodiversity conservation and sustainable utilization.


Assuntos
COVID-19 , Pandemias , Animais , Controle de Doenças Transmissíveis , Ecossistema , Monitoramento Ambiental , Humanos , Índia , SARS-CoV-2
8.
Sci Rep ; 10(1): 22133, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33335160

RESUMO

Coral reefs around the world are undergoing severe decline in the past few decades. Mass coral mortalities have predominantly been reported to be caused by coral bleaching or disease outbreaks. Temporary hypoxic conditions caused by algal blooms can trigger mass coral mortalities though are reported rarely. In this study in Gulf of Mannar (GoM), southeast India, we report a significant coral mortality caused by a bloom of the ciguatoxic dinoflagellate Noctiluca scintillans during September-October 2019. Dissolved oxygen levels declined below 2 mg l-1 during the bloom causing temporary hypoxia and mortality (up to 71.23%) in the fast growing coral genera Acropora, Montipora and Pocillopora. Due to global climate change, more frequent and larger algal blooms are likely in the future. Hence, it is likely that shallow water coral reefs will be affected more frequently by episodic hypoxic conditions driven by algal blooms. More studies are, however, required to understand the mechanism of coral mortality due to algal blooms, impacts on community composition and the potential for subsequent recovery.


Assuntos
Antozoários , Antibiose , Dinoflagellida/fisiologia , Proliferação Nociva de Algas , Oxigênio/metabolismo , Animais , Recifes de Corais , Meio Ambiente , Geografia , Índia
9.
Mar Pollut Bull ; 151: 110793, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32056588

RESUMO

Underwater survey was conducted to assess the accumulation and impact of marine debris in the reef areas of Gulf of Mannar in southeast India. A combination of roving diver technique and belt transect method was applied for the assessment, which was conducted during the period between February 2018 and March 2019. An estimated total reef area of 1152 m2 has been affected by marine debris. Abandoned fishing nets were found to constitute the major portion of 43.17 ± 5.48% of the marine debris. Live corals were found to be dominant substrates for marine debris with 39.11%. The average prevalence of coral colonies in contact with marine debris was 3.28 ± 0.27%. Prevalence of corals in contact with debris was very high in genus Acropora with 8.23 ± 1.29% followed by Montipora with 4.63 ± 1.29% due to their complex growth form. Of the corals in contact with debris, 47.56% were fragmented and 34% were found with tissue loss.


Assuntos
Antozoários , Recifes de Corais , Monitoramento Ambiental , Resíduos , Poluentes da Água , Animais , Índia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa