Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 933: 173154, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38735322

RESUMO

Personal Care Products (PCPs) have been one of the most studied chemicals in the last twenty years since they were identified as pseudo-persistent pollutants by the European Union in the early 2000s. The accumulation of PCPs in the aquatic environment and their effects on non-target species make it necessary to find new, less harmful, substances. Polyethylene glycol (PEGs) and polyvinyl alcohol (PVAs) are two polymers that have increased their presence in the composition of PCPs in recent years, but little is known about the effect of their accumulation in the environment on non-target species. Through embryotoxicity tests on two common models of aquatic organisms (Danio rerio and Xenopus laevis), this work aims to increase the knowledge of PEGs and PVAs' effects on non-target species. Animals were exposed to the pollutant for 96 h. The main embryotoxicity endpoint (mortality, hatching, malformations, heartbeat rate) was recorded every 24 h. The most significant results were hatching delay in Danio rerio exposed to both chemicals, in malformations (oedema, body malformations, changes in pigmentation and deformations of spine and tail) in D. rerio and X. laevis and significant change in the heartbeat rate (decrease or increase in the rate) in both animals for all chemicals tested.


Assuntos
Embrião não Mamífero , Polietilenoglicóis , Álcool de Polivinil , Poluentes Químicos da Água , Peixe-Zebra , Animais , Poluentes Químicos da Água/toxicidade , Embrião não Mamífero/efeitos dos fármacos , Álcool de Polivinil/toxicidade , Álcool de Polivinil/química , Polietilenoglicóis/toxicidade , Xenopus laevis , Testes de Toxicidade
2.
Antioxidants (Basel) ; 13(6)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38929173

RESUMO

Pharmaceutical and personal care products (PPCPs) containing persistent and potentially hazardous substances have garnered attention for their ubiquitous presence in natural environments. This study investigated the impact of polyethylene glycol (PEG), a common PPCP component, on Mytilus galloprovincialis. Mussels were subjected to two PEG concentrations (E1: 0.1 mg/L and E2: 10 mg/L) over 14 days. Oxidative stress markers in both gills and digestive glands were evaluated; cytotoxicity assays were performed on haemolymph and digestive gland cells. Additionally, cell volume regulation (RVD assay) was investigated to assess physiological PEG-induced alterations. In the gills, PEG reduced superoxide dismutase (SOD) activity and increased lipid peroxidation (LPO) at E1. In the digestive gland, only LPO was influenced, while SOD activity and oxidatively modified proteins (OMPs) were unaltered. A significant decrease in cell viability was observed, particularly at E2. Additionally, the RVD assay revealed disruptions in the cells subjected to E2. These findings underscore the effects of PEG exposure on M. galloprovincialis. They are open to further investigations to clarify the environmental implications of PPCPs and the possibility of exploring safer alternatives.

3.
Sci Total Environ ; 904: 166378, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37595903

RESUMO

The incidence of diseases of affluence, such as diabetes mellitus, cardiovascular diseases, high blood pressure, and high cholesterol has been reported to rise. Consequently, the concentrations of residues of drugs designed to treat these diseases have been rising in water bodies. Moreover, the toxicity of these pharmaceuticals towards fish and other non-target organisms can be even enhanced by microplastic particles that are reportedly present in surface water. Therefore, the aim of this study was to describe the effects of three highly prescribed drugs, in particular metoprolol, enalapril, and metformin on fish early-life stages. Also, it was hypothesized that polystyrene microparticles will increase the toxicity of metoprolol to fish early-life stages. Embryonal acute toxicity tests on Danio rerio and Cyprinus carpio were carried out in order to describe the possible toxic effects of metoprolol, enalapril, and metformin. Also, the acute toxicity of polystyrene microparticles and the combination of metoprolol with polystyrene microparticles were tested on D. rerio embryos. Additionally, a 31-day long embryo-larval subchronic toxicity test was carried out with C. carpio in order to describe the long-term effects of low concentrations of metoprolol. The results of the study show that both metoprolol and enalapril have the potential to disrupt the early development of the heart in the embryonal stages of fish. Also, enalapril and metformin together with polystyrene microparticles seem to possibly disrupt the reproduction cycle and act as endocrine disruptors. Both pure polystyrene microparticles and the combination of them with metoprolol affect inflammatory processes in organisms. Additionally, metformin alters several metabolism pathways in fish early-life stages. The results of the study bring new evidence that even low, environmentally-relevant concentrations of pharmaceuticals have the potential to disrupt the early development of fish, particularly on a molecular level.


Assuntos
Carpas , Metformina , Poluentes Químicos da Água , Animais , Metoprolol , Microplásticos , Plásticos , Poliestirenos/toxicidade , Peixe-Zebra , Enalapril , Metformina/toxicidade , Água , Preparações Farmacêuticas , Poluentes Químicos da Água/toxicidade
4.
Toxics ; 11(4)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37112561

RESUMO

Pesticides and personal care products are two very important groups of contaminants posing a threat to the aquatic environment and the organisms living in it.. Therefore, this study aimed to describe the effects of widely used pesticides and parabens on aquatic non-target biota such as fish (using model organisms Danio rerio and Cyprinus carpio) and amphibians (using model organism Xenopus laevis) using a wide range of endpoints. The first part of the experiment was focused on the embryonal toxicity of three widely used pesticides (metazachlor, prochloraz, and 4-chloro-2-methyl phenoxy acetic acid) and three parabens (methylparaben, propylparaben, and butylparaben) with D. rerio, C. carpio, and X. laevis embryos. An emphasis was placed on using mostly sub-lethal concentrations that are partially relevant to the environmental concentrations of the substances studied. In the second part of the study, an embryo-larval toxicity test with C. carpio was carried out with prochloraz using concentrations 0.1, 1, 10, 100, and 1000 µg/L. The results of both parts of the study show that even the low, environmentally relevant concentrations of the chemicals tested are often able to affect the expression of genes that play either a prominent role in detoxification and sex hormone production or indicate cell stress or, in case of prochloraz, to induce genotoxicity.

5.
Chemosphere ; 291(Pt 2): 132915, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34788676

RESUMO

Environmental concentrations of pharmacologically active substances are increasing dramatically throughout the world, to the point where they are now considered a serious threat to the aquatic environment. This high occurrence of pharmaceutical residues in the aquatic environment is due to an increase in i) the prescription and consumption of drugs, and ii) their subsequent discharge into wastewater and its imperfect purification in wastewater treatment plants. Recent surveys have clearly shown that such substances can have serious negative effects on non-target organisms. In the present study, we tested the effects of several commonly used pharmaceuticals, such as antidepressants, analgesics and antibiotics, on the embryonic stages of different fishes. Specifically, we applied concentration ranges of tramadol, enrofloxacin and nortriptylined on a common toxicological model organism, the zebrafish (Danio rerio), and other species native to Central European freshwaters, i.e. common carp (Cyprinus carpio), catfish (Silurus glanis) and tench (Tinca tinca). Our results show that, though malformation and negative impacts on hatching and mortality were only observed at the highest test concentrations, gene expression indicated that even low environmentally relevant concentrations (0.1 µg/L) can cause significant changes in early development of embryo.


Assuntos
Carpas , Cyprinidae , Preparações Farmacêuticas , Poluentes Químicos da Água , Animais , Embrião não Mamífero , Poluentes Químicos da Água/toxicidade , Peixe-Zebra
6.
Chemosphere ; 293: 133689, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35063564

RESUMO

Magnéli phase titanium suboxides (Magnéli TiOx) are promising, novel materials with superior properties compared to TiO2, they are substoichiometric titanium oxides with the chemical formula TinO2n-1 (where n ≥ 1). In this study, for the first time, subchronic effects of dietary intake of Magnéli TiOx were evaluated and compared with TiO2 particles of similar size, in concentrations 0.1% and 0.01% of feed. The experiment consisted of 38 d of an exposition period and 14 d of a depuration period. Minor effects on plasma biochemical profile and morphological parameters were recorded. A reduced count of leukocytes was found in the blood of both Magnéli TiOx and TiO2 exposed fish, suggesting immunotoxic effects. Erythrocytosis was specific for Magnéli TiOx. Indices of oxidative stress, namely increased lipid peroxidation in liver, increased activity of superoxide dismutase in liver, kidney and gills and glutathione S-transferase (GST) in gills, as well as decreased activity of ceruloplasmin and GST in liver were found predominantly in fish exposed to TiO2. Histopathological examination revealed increased lipid-like vacuolation in the liver, the presence of hyaline droplets in renal tubules and multiplication of mucous glands in the epidermis in both tested substances and intestine damage in TiO2 groups. Overall, in Magnéli TiOx exposed groups, fewer adverse effects compared to TiO2 expositions were recorded. Their wider practical implementation in place of TiO2 is therefore beneficial.


Assuntos
Nanopartículas , Oncorhynchus mykiss , Poluentes Químicos da Água , Animais , Exposição Dietética , Fígado/metabolismo , Nanopartículas/toxicidade , Estresse Oxidativo , Titânio/farmacologia , Poluentes Químicos da Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa