Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 20(30): 20167-20187, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30027960

RESUMO

Three new organic compounds primarily based on 8-hydroxyquinoline have been successfully synthesized and characterized via different spectroscopic methods (FTIR, 1H, and 13C NMR). The synthesized compounds, namely 5-propoxymethyl-8-hydroxyquinoline (PMHQ), 5-methoxymethyl-8-hydroxyquinoline (MMHQ) and 5-hydroxymethyl-8-hydroxyquinoline (HMHQ), were evaluated as corrosion inhibitors for carbon steel in 1 M HCl solution using electrochemical impedance spectroscopy, potentiodynamic polarization and weight loss measurements at 298 K. Electrochemical measurements confirmed that the newly synthesized 5-alkoxymethyl-8-hydroxyquinoline derivatives are mixed type corrosion inhibitors and confirmed maximum protection efficiencies of 94, 89 and 81% for PMHQ, MMHQ, and HMHQ, respectively, at the optimum concentration of 10-3 M. The EIS spectra confirmed a slightly depressed semi-circle profile with a single time constant in Bode diagrams for the three organic compounds over the whole concentration and temperature ranges studied. The adsorption of PMHQ, MMHQ, and HMHQ on the carbon steel surface followed the Langmuir adsorption isotherm. In addition, the kinetic and thermodynamic parameters for carbon steel corrosion and inhibitor adsorption, respectively, were determined and discussed. Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) analyses supported the formation of a protective film on carbon steel in the presence of PMHQ, MMHQ, and HMHQ. Density functional theory calculations (DFT) showed that the effectiveness of the inhibitive actions of the studied compounds correlates well with their electron donating ability, whilst Monte Carlo simulations revealed that the extent and favourability of adsorption of inhibitor molecules on the carbon steel surface establish their corrosion inhibition performances.

2.
Int J Biol Macromol ; 155: 645-655, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32224172

RESUMO

The present study reports the synthesis, characterization and corrosion inhibition effects of chitosan (CH) and its 5-chloromethyl-8-hydroxyquinoline derivative (CH-HQ) for mild steel in acidic medium. The synthesized CH-HQ was characterized using 1H NMR and FT-IR spectroscopic methods. Corrosion inhibition efficiencies of CH and CH-HQ were measured using electrochemical and chemical techniques. The surface protection ability of the inhibitor molecules was also ascertained by surface analysis, while computational study was used to further justify the adsorption tendencies of the molecules on mild steel surface. CH-HQwasobserved to exhibit better protection efficiency than CH, as the highest inhibition efficiencies were recorded to be 78% and 93% for CH and CH-HQ, respectively. Potentiodynamic polarization studies revealed that CH and CH-HQ are mixed-type corrosion inhibitors over the studied temperature range (298 K ± 1 to 328 K ± 1). SEM-EDS studies were performed to demonstrate the adsorption of CH and CH-HQ on the mild steel surface. Adsorption behavior of the CH and CH-HQ was also supported by UV-visible (UV-vis) spectrophotometric analyses. Monte Carlo simulations (MC) and density functional theory (DFT) calculations were carried out to corroborate the experimental results.


Assuntos
Carboidratos/química , Quitosana/química , Método de Monte Carlo , Oxiquinolina/química , Polímeros/química , Teoria Quântica , Aço/química , Corrosão , Espectroscopia Dielétrica , Propriedades de Superfície
3.
Heliyon ; 5(11): e02759, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31768434

RESUMO

The adsorption and corrosion inhibition properties of two imidazole derivatives namely, 2-(4-chlorophenyl)-1,4,5-triphenyl-1H-imidazole (IM-Cl) and 1,4,5-triphenyl-2-(p-tolyl)-1H-imidazole (IM-CH3) for mild steel in 0.5 M H2SO4 solution are studiedby electrochemical and computational calculations. The results obtained from the electrochemical methods show that IM-Cl and IM-CH3imparted high resistance and behave as mixed type inhibitors. Inhibition efficiency (IE %) increases with the increase of inhibitors concentration to attain 96 % and 91% at 10-3 M of IM-Cl and IM-CH3 respectively. EISdatais analyzed to model the inhibition process through appropriate equivalent circuit model. Thermodynamic and kinetic parameters controlling the adsorption process are calculated and discussed. DFT calculations are carried out at the B3LYP levels of theory with 6-31G (d,p) basis stein gas and aqueous phase for neutral and protonated forms. Quantum chemical calculations section of the study provides enough calculation and discussion on the relationship between corrosion inhibition and global reactivity descriptors.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa