Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38881423

RESUMO

Aqueous humor drainage from the anterior eye determines intraocular pressure (IOP) under homeostatic and pathological conditions. Swelling of the trabecular meshwork (TM) alters its flow resistance but the mechanisms that sense and transduce osmotic gradients remain poorly understood. We investigated TM osmotransduction and its role in calcium and chloride homeostasis using molecular analyses, optical imaging and electrophysiology. Anisosmotic conditions elicited proportional changes in TM cell volume, with swelling, but not shrinking, evoking elevations in intracellular calcium concentration [Ca2+]TM. Hypotonicity-evoked calcium signals were sensitive to HC067047, a selective blocker of TRPV4 channels, whereas the agonist GSK1016790A promoted swelling under isotonic conditions. TRPV4 inhibition partially suppressed hypotonicity-induced volume increases and reduced the magnitude of the swelling-induced membrane current, with a substantial fraction of the swelling-evoked current abrogated by Cl- channel antagonists DIDS and niflumic acid. The transcriptome of volume-sensing chloride channel candidates in primary human was dominated by ANO6 transcripts, with moderate expression of ANO3, ANO7, ANO10 transcripts and low expression of LTTRC genes that encode constituents of the volume-activated anion channel. Imposition of 190 mOsm but not 285 mOsm hypotonic gradients increased conventional outflow in mouse eyes. TRPV4-mediated cation influx thus works with Cl- efflux to sense and respond to osmotic stress, potentially contributing to pathological swelling, calcium overload and intracellular signaling that could exacerbate functional disturbances in inflammatory disease and glaucoma.

2.
Am J Physiol Renal Physiol ; 324(6): F603-F616, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37141145

RESUMO

The Ca2+-permeable transient receptor potential vanilloid type 4 (TRPV4) channel serves as the sensor of tubular flow, thus being well suited to govern mechanosensitive K+ transport in the distal renal tubule. Here, we directly tested whether the TRPV4 function is significant in affecting K+ balance. We used balance metabolic cage experiments and systemic measurements with different K+ feeding regimens [high (5% K+), regular (0.9% K+), and low (<0.01% K+)] in newly created transgenic mice with selective TRPV4 deletion in the renal tubule (TRPV4fl/fl-Pax8Cre) and their littermate controls (TRPV4fl/fl). Deletion was verified by the absence of TRPV4 protein expression and lack of TRPV4-dependent Ca2+ influx. There were no differences in plasma electrolytes, urinary volume, and K+ levels at baseline. In contrast, plasma K+ levels were significantly elevated in TRPV4fl/fl-Pax8Cre mice on high K+ intake. K+-loaded knockout mice exhibited lower urinary K+ levels than TRPV4fl/fl mice, which was accompanied by higher aldosterone levels by day 7. Moreover, TRPV4fl/fl-Pax8Cre mice had more efficient renal K+ conservation and higher plasma K+ levels in the state of dietary K+ deficiency. H+-K+-ATPase levels were significantly increased in TRPV4fl/fl-Pax8Cre mice on a regular diet and especially on a low-K+ diet, pointing to augmented K+ reabsorption in the collecting duct. Consistently, we found a significantly faster intracellular pH recovery after intracellular acidification, as an index of H+-K+-ATPase activity, in split-opened collecting ducts from TRPV4fl/fl-Pax8Cre mice. In summary, our results demonstrate an indispensable prokaliuretic role of TRPV4 in the renal tubule in controlling K+ balance and urinary K+ excretion during variations in dietary K+ intake. NEW & NOTEWORTHY The mechanoactivated transient receptor potential vanilloid type 4 (TRPV4) channel is expressed in distal tubule segments, where it controls flow-dependent K+ transport. Global TRPV4 deficiency causes impaired adaptation to variations in dietary K+ intake. Here, we demonstrate that renal tubule-specific TRPV4 deletion is sufficient to recapitulate the phenotype by causing antikaliuresis and higher plasma K+ levels in both states of K+ load and deficiency.


Assuntos
Hipopotassemia , Deficiência de Potássio , Animais , Camundongos , Adenosina Trifosfatases , Homeostase , Hipopotassemia/metabolismo , Túbulos Renais/metabolismo , Túbulos Renais Distais/metabolismo , Camundongos Knockout , Camundongos Transgênicos , Deficiência de Potássio/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo
3.
Curr Top Membr ; 89: 189-219, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36210149

RESUMO

The architecture of the vertebrate eye is optimized for efficient delivery and transduction of photons and processing of signaling cascades downstream from phototransduction. The cornea, lens, retina, vasculature, ciliary body, ciliary muscle, iris and sclera have specialized functions in ocular protection, transparency, accommodation, fluid regulation, metabolism and inflammatory signaling, which are required to enable function of the retina-light sensitive tissue in the posterior eye that transmits visual signals to relay centers in the midbrain. This process can be profoundly impacted by non-visual stimuli such as mechanical (tension, compression, shear), thermal, nociceptive, immune and chemical stimuli, which target these eye regions to induce pain and precipitate vision loss in glaucoma, diabetic retinopathy, retinal dystrophies, retinal detachment, cataract, corneal dysfunction, ocular trauma and dry eye disease. TRPV4, a polymodal nonselective cation channel, integrate non-visual inputs with homeostatic and signaling functions of the eye. The TRPV4 gene is expressed in most if not all ocular tissues, which vary widely with respect to the mechanisms of TRPV4 channel activation, modulation, oligomerization, and participation in protein- and lipid interactions. Under- and overactivation of TRPV4 may affect intraocular pressure, maintenance of blood-retina barriers, lens accommodation, neuronal function and neuroinflammation. Because TRPV4 dysregulation precipitates many pathologies across the anterior and posterior eye, the channel could be targeted to mitigate vision loss.


Assuntos
Retina , Canais de Cátion TRPV , Animais , Córnea/metabolismo , Lipídeos , Canais de Cátion TRPV/metabolismo , Vertebrados/metabolismo
4.
Am J Physiol Cell Physiol ; 320(6): C1013-C1030, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33788628

RESUMO

Intraocular pressure (IOP) is dynamically regulated by the trabecular meshwork (TM), a mechanosensitive tissue that protects the eye from injury through dynamic regulation of aqueous humor flow. TM compensates for mechanical stress impelled by chronic IOP elevations through increased actin polymerization, tissue stiffness, and contractility. This process has been associated with open angle glaucoma; however, the mechanisms that link mechanical stress to pathological cytoskeletal remodeling downstream from the mechanotransducers remain poorly understood. We used fluorescence imaging and biochemical analyses to investigate cytoskeletal and focal adhesion remodeling in human TM cells stimulated with physiological strains. Mechanical stretch promoted F-actin polymerization, increased the number and size of focal adhesions, and stimulated the activation of the Rho-associated protein kinase (ROCK). Stretch-induced activation of the small GTPase Ras homolog family member A (RhoA), and tyrosine phosphorylations of focal adhesion proteins paxillin, focal adhesion kinase (FAK), vinculin, and zyxin were time dependently inhibited by ROCK inhibitor trans-4-[(1R)-1-aminoethyl]-N-4-pyridinylcyclohexanecarboxamide dihydrochloride (Y-27632), and by HC-067047, an antagonist of transient receptor potential vanilloid 4 (TRPV4) channels. Both TRPV4 and ROCK activation were required for zyxin translocation and increase in the number/size of focal adhesions in stretched cells. Y-27632 blocked actin polymerization without affecting calcium influx induced by membrane stretch and the TRPV4 agonist GSK1016790A. These results reveal that mechanical tuning of TM cells requires parallel activation of TRPV4, integrins, and ROCK, with chronic stress leading to sustained remodeling of the cytoskeleton and focal complexes.


Assuntos
Citoesqueleto/metabolismo , Adesões Focais/metabolismo , Transdução de Sinais/fisiologia , Canais de Cátion TRPV/metabolismo , Malha Trabecular/metabolismo , Quinases Associadas a rho/metabolismo , Actinas/metabolismo , Humor Aquoso/metabolismo , Adesão Celular/fisiologia , Células Cultivadas , Olho/metabolismo , Feminino , GTP Fosfo-Hidrolases/metabolismo , Glaucoma de Ângulo Aberto/metabolismo , Humanos , Pressão Intraocular/fisiologia , Masculino , Pessoa de Meia-Idade , Proteína rhoA de Ligação ao GTP/metabolismo
5.
J Lipid Res ; 62: 100145, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34710431

RESUMO

Despite the association of cholesterol with debilitating pressure-related diseases such as glaucoma, heart disease, and diabetes, its role in mechanotransduction is not well understood. We investigated the relationship between mechanical strain, free membrane cholesterol, actin cytoskeleton, and the stretch-activated transient receptor potential vanilloid isoform 4 (TRPV4) channel in human trabecular meshwork (TM) cells. Physiological levels of cyclic stretch resulted in time-dependent decreases in membrane cholesterol/phosphatidylcholine ratio and upregulation of stress fibers. Depleting free membrane cholesterol with m-ß-cyclodextrin (MßCD) augmented TRPV4 activation by the agonist GSK1016790A, swelling and strain, with the effects reversed by cholesterol supplementation. MßCD increased membrane expression of TRPV4, caveolin-1, and flotillin. TRPV4 did not colocalize or interact with caveolae or lipid rafts, apart from a truncated ∼75 kDa variant partially precipitated by a caveolin-1 antibody. MßCD induced currents in TRPV4-expressing Xenopus laevis oocytes. Thus, membrane cholesterol regulates trabecular transduction of mechanical information, with TRPV4 channels mainly located outside the cholesterol-enriched membrane domains. Moreover, the biomechanical milieu itself shapes the lipid content of TM membranes. Diet, cholesterol metabolism, and mechanical stress might modulate the conventional outflow pathway and intraocular pressure in glaucoma and diabetes in part by modulating TM mechanosensing.


Assuntos
Membrana Celular/metabolismo , Colesterol/metabolismo , Citoesqueleto/metabolismo , Canais de Cátion TRPV/metabolismo , Idoso , Animais , Membrana Celular/química , Células Cultivadas , Humanos , Masculino , Mecanotransdução Celular , Canais de Cátion TRPV/genética , Xenopus laevis
6.
J Physiol ; 599(2): 571-592, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33226641

RESUMO

KEY POINTS: Trabecular meshwork (TM) is a highly mechanosensitive tissue in the eye that regulates intraocular pressure through the control of aqueous humour drainage. Its dysfunction underlies the progression of glaucoma but neither the mechanisms through which TM cells sense pressure nor their role in aqueous humour outflow are understood at the molecular level. We identified the Piezo1 channel as a key TM transducer of tensile stretch, shear flow and pressure. Its activation resulted in intracellular signals that altered organization of the cytoskeleton and cell-extracellular matrix contacts and modulated the trabecular component of aqueous outflow whereas another channel, TRPV4, mediated a delayed mechanoresponse. This study helps elucidate basic mechanotransduction properties that may contribute to intraocular pressure regulation in the vertebrate eye. ABSTRACT: Chronic elevations in intraocular pressure (IOP) can cause blindness by compromising the function of trabecular meshwork (TM) cells in the anterior eye, but how these cells sense and transduce pressure stimuli is poorly understood. Here, we demonstrate functional expression of two mechanically activated channels in human TM cells. Pressure-induced cell stretch evoked a rapid increase in transmembrane current that was inhibited by antagonists of the mechanogated channel Piezo1, Ruthenium Red and GsMTx4, and attenuated in Piezo1-deficient cells. The majority of TM cells exhibited a delayed stretch-activated current that was mediated independently of Piezo1 by TRPV4 (transient receptor potential cation channel, subfamily V, member 4) channels. Piezo1 functions as the principal TM transducer of physiological levels of shear stress, with both shear and the Piezo1 agonist Yoda1 increasing the number of focal cell-matrix contacts. Analysis of TM-dependent fluid drainage from the anterior eye showed significant inhibition by GsMTx4. Collectively, these results suggest that TM mechanosensitivity utilizes kinetically, regulatory and functionally distinct pressure transducers to inform the cells about force-sensing contexts. Piezo1-dependent control of shear flow sensing, calcium homeostasis, cytoskeletal dynamics and pressure-dependent outflow suggests potential for a novel therapeutic target in treating glaucoma.


Assuntos
Humor Aquoso , Malha Trabecular , Citoesqueleto , Humanos , Pressão Intraocular , Canais Iônicos/genética , Mecanotransdução Celular , Canais de Cátion TRPV
7.
Glia ; 69(6): 1563-1582, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33624376

RESUMO

The physiological and neurological correlates of plummeting brain osmolality during edema, traumatic CNS injury, and severe ischemia are compounded by neuroinflammation. Using multiple approaches, we investigated how retinal microglia respond to challenges mediated by increases in strain, osmotic gradients, and agonists of the stretch-activated cation channel TRPV4. Dissociated and intact microglia were TRPV4-immunoreactive and responded to the selective agonist GSK1016790A and substrate stretch with altered motility and elevations in intracellular calcium ([Ca2+ ]i ). Agonist- and hypotonicity-induced swelling was associated with a nonselective outwardly rectifying cation current, increased [Ca2+ ]i , and retraction of higher-order processes. The antagonist HC067047 reduced the extent of hypotonicity-induced microglial swelling and inhibited the suppressive effects of GSK1016790A and hypotonicity on microglial branching. Microglial TRPV4 signaling required intermediary activation of phospholipase A2 (PLA2), cytochrome P450, and epoxyeicosatrienoic acid production (EETs). The expression pattern of vanilloid thermoTrp genes in retinal microglia was markedly different from retinal neurons, astrocytes, and cortical microglia. These results suggest that TRPV4 represents a primary retinal microglial sensor of osmochallenges under physiological and pathological conditions. Its activation, associated with PLA2, modulates calcium signaling and cell architecture. TRPV4 inhibition might be a useful strategy to suppress microglial overactivation in the swollen and edematous CNS.


Assuntos
Microglia , Canais de Cátion TRPV/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio , Humanos , Microglia/metabolismo , Neuroglia/metabolismo , Doenças Neuroinflamatórias , Canais de Cátion TRPV/genética
8.
Proc Natl Acad Sci U S A ; 113(14): 3885-90, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-27006502

RESUMO

Fluid secretion by the ciliary body plays a critical and irreplaceable function in vertebrate vision by providing nutritive support to the cornea and lens, and by maintaining intraocular pressure. Here, we identify TRPV4 (transient receptor potential vanilloid isoform 4) channels as key osmosensors in nonpigmented epithelial (NPE) cells of the mouse ciliary body. Hypotonic swelling and the selective agonist GSK1016790A (EC50 ∼33 nM) induced sustained transmembrane cation currents and cytosolic [Formula: see text] elevations in dissociated and intact NPE cells. Swelling had no effect on [Formula: see text] levels in pigment epithelial (PE) cells, whereas depolarization evoked [Formula: see text] elevations in both NPE and PE cells. Swelling-evoked [Formula: see text] signals were inhibited by the TRPV4 antagonist HC067047 (IC50 ∼0.9 µM) and were absent in Trpv4(-/-) NPE. In NPE, but not PE, swelling-induced [Formula: see text] signals required phospholipase A2 activation. TRPV4 localization to NPE was confirmed with immunolocalization and excitation mapping approaches, whereas in vivo MRI analysis confirmed TRPV4-mediated signals in the intact mouse ciliary body. Trpv2 and Trpv4 were the most abundant vanilloid transcripts in CB. Overall, our results support a model whereby TRPV4 differentially regulates cell volume, lipid, and calcium signals in NPE and PE cell types and therefore represents a potential target for antiglaucoma medications.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Corpo Ciliar/fisiologia , Células Epiteliais/metabolismo , Epitélio/metabolismo , Glaucoma/patologia , Canais de Cátion TRPV/metabolismo , Visão Ocular/fisiologia , Animais , Cálcio/metabolismo , Tamanho Celular , Células Cultivadas , Ativação Enzimática , Leucina/análogos & derivados , Leucina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pressão Osmótica/fisiologia , Fosfolipases A2/metabolismo , Sulfonamidas/farmacologia , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/genética
9.
Adv Exp Med Biol ; 1074: 553-560, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29721987

RESUMO

The transient receptor potential vanilloid isoform 4 (TRPV4) functions as polymodal transducer of swelling, heat, stretch, and lipid metabolites, is widely expressed across sensory tissues, and has been implicated in pressure sensing in vertebrate retinas. Although TRPV4 knockout mice exhibit a variety of mechanosensory, nociceptive, and thermo- and osmoregulatory phenotypes, it is not known whether the transmission of light-induced signals in the eye is affected by the loss of TRPV4. We utilized field potentials, a measure of rod and cone signaling, to determine whether TRPV4 impacts on the generation and/or transmission of the photoreceptor light response and neurotransmission. Luminance intensity-response relationships were acquired in anesthetized wild-type and TRPV4-/- mice and evaluated for peak amplitude and implicit time under scotopic and photopic conditions. We found that the morphology of the outer retina is unaffected by the ablation of the Trpv4 gene. Calcium imaging of dissociated Müller glia showed that selective TRPV4 stimulation induces oscillatory calcium signals in adjacent rods. However, no differences in scotopic or photopic light-evoked signaling in the distal retina were observed in TRPV4-/- eyes, suggesting that TRPV4 signaling in healthy Müller cells does not modulate the transmission of light-evoked signals at rod and cone synapses.


Assuntos
Transdução de Sinal Luminoso/fisiologia , Células Fotorreceptoras de Vertebrados/efeitos da radiação , Canais de Cátion TRPV/fisiologia , Animais , Sinalização do Cálcio/fisiologia , Eletrorretinografia , Células Ependimogliais/química , Células Ependimogliais/fisiologia , Leucina/análogos & derivados , Leucina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Visão Noturna/fisiologia , Células Fotorreceptoras de Vertebrados/metabolismo , Células Ganglionares da Retina/química , Células Ganglionares da Retina/fisiologia , Sulfonamidas/farmacologia , Canais de Cátion TRPV/agonistas , Canais de Cátion TRPV/deficiência , Canais de Cátion TRPV/genética
10.
J Physiol ; 595(20): 6499-6516, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28766743

RESUMO

KEY POINTS: Retinal cells use vanilloid transient receptor potential (TRP) channels to integrate light-evoked signals with ambient mechanical, chemical and temperature information. Localization and function of the polymodal non-selective cation channel TRPV1 (transient receptor potential vanilloid isoform 1) remains elusive. TRPV1 is expressed in a subset of mouse retinal ganglion cells (RGCs) with peak expression in the mid-peripheral retina. Endocannabinoids directly activate TRPV1 and inhibit it through cannabinoid type 1 receptors (CB1Rs) and cAMP pathways. Activity-dependent endocannabinoid release may modulate signal gain in RGCs through simultaneous manipulation of calcium and cAMP signals mediated by TRPV1 and CB1R. ABSTRACT: How retinal ganglion cells (RGCs) process and integrate synaptic, mechanical, swelling stimuli with light inputs is an area of intense debate. The nociceptive cation channel TRPV1 (transient receptor potential vanilloid type 1) modulates RGC Ca2+ signals and excitability yet the proportion of RGCs that express it remains unclear. Furthermore, TRPV1's response to endocannabinoids (eCBs), the putative endogenous retinal activators, is unknown, as is the potential modulation by cannabinoid receptors (CBRs). The density of TRPV1-expressing RGCs in the Ai9:Trpv1 reporter mouse peaked in the mid-peripheral retina. TRPV1 agonists including capsaicin (CAP) and the eCBs anandamide and N-arachidonoyl-dopamine elevated [Ca2+ ]i in 30-40% of wild-type RGCs, with effects suppressed by TRPV1 antagonists capsazepine (CPZ) and BCTC ((4-(3-chloro-2-pyridinyl)-N-[4-(1,1-dimethylethyl)phenyl]-1-piperazinecarboxamide), and lacking in Trpv1-/- cells. The cannabinoid receptor type 1 (CB1R) colocalized with TRPV1:tdTomato expression. Its agonists 2-arachidonoylglycerol (2-AG) and WIN55,122 inhibited CAP-induced [Ca2+ ]i signals in adult, but not early postnatal, RGCs. The suppressive effect of 2-AG on TRPV1 activation was emulated by positive modulators of the protein kinase A (PKA) pathway, inhibited by the CB1R antagonist rimonabant and Gi uncoupler pertussis toxin, and absent in Cnr1-/- RGCs. We conclude that TRPV1 is a modulator of Ca2+ homeostasis in a subset of RGCs that show non-uniform distribution across the mouse retina. Non-retrograde eCB-mediated modulation of RGC signalling involves a dynamic push-pull between direct TRPV1 activation and PKA-dependent regulation of channel inactivation, with potential functions in setting the bandwidth of postsynaptic responses, sensitivity to mechanical/excitotoxic stress and neuroprotection.


Assuntos
Receptor CB1 de Canabinoide/fisiologia , Células Ganglionares da Retina/fisiologia , Canais de Cátion TRPV/fisiologia , Animais , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transdução de Sinais
11.
Glia ; 65(12): 2038-2050, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28856727

RESUMO

Over- and underexposure to cholesterol activates glia in neurodegenerative brain and retinal diseases but the molecular targets of cholesterol in glial cells are not known. Here, we report that disruption of unesterified membrane cholesterol content modulates the transduction of chemical, mechanical and temperature stimuli in mouse Müller cells. Activation of TRPV4 (transient receptor potential vanilloid type 4), a nonselective polymodal cation channel was studied following the removal or supplementation of cholesterol using the methyl-beta cyclodextrin (MßCD) delivery vehicle. Cholesterol extraction disrupted lipid rafts and caveolae without affecting TRPV4 trafficking or membrane localization protein. However, MßCD suppressed agonist (GSK1016790A)- and temperature-evoked elevations in [Ca2+ ]i , and suppressed transcellular propagation of Ca2+ waves. Lowering the free membrane cholesterol content markedly prolonged the time-course of the glial swelling response, whereas MßCD:cholesterol supplementation enhanced agonist- and temperature-induced Ca2+ signals and shortened the swelling response. Taken together, these data show that membrane cholesterol modulates polymodal transduction of agonists, swelling and temperature stimuli in retinal radial glia and suggest that dyslipidemic retinas might be associated with abnormal glial transduction of ambient sensory inputs.


Assuntos
Colesterol/metabolismo , Células Ependimogliais/metabolismo , Transdução de Sinais/fisiologia , Animais , Cálcio/metabolismo , Caveolina 1/genética , Caveolina 1/metabolismo , Células Cultivadas , Colesterol/farmacologia , Células Ependimogliais/efeitos dos fármacos , Feminino , Leucina/análogos & derivados , Leucina/farmacologia , Masculino , Microdomínios da Membrana , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Técnicas de Patch-Clamp , Retina/citologia , Transdução de Sinais/genética , Sulfonamidas/farmacologia , Canais de Cátion TRPV/agonistas , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Temperatura
12.
Int J Cancer ; 136(7): 1528-36, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25155872

RESUMO

Cancer hypoxia correlates with therapeutic resistance and metastasis, suggesting that hypoxic adaptation is a critical survival advantage for cancer stem cells (CSCs). Hypoxic metabolism, however, may be a disadvantage in aerobic circulation as the extremely low incidence of metastasis-compared to the high circulating tumor-cell numbers (CTCs)-appears to suggest. As rare metastatic CSCs still survive, we searched for a mechanism that protects them from oxygen in circulation. CSCs form multicellular spheroids in vitro from virtually all cancers tested. We asked, therefore, whether cancers also form spheroids in vivo and whether circulating spheroids play a role in metastasis. We used metabolic, apoptotic and hypoxia assays, we measured aerobic barriers and calculated hypoxia vs. spheroid-size correlations. We detected metabolic/oxidative stress in spheroids, we found correlation between stem cell presence and hypoxia and we showed that the size of hypoxic spheroids is compatible with circulation. To detect spheroids in patients, we worked out a new light-scatter flow cytometry blood test and assayed 67 metastatic and control cases. We found in vivo spheroids with positive stem cell markers in cancer blood and they showed exclusive correlation with metastasis. In conclusion, our data suggest that metastatic success depends on CSC-association with in vivo spheroids. We propose that the mechanism involves a portable "micro-niche" in spheroids that may support CSC-survival/adaptation in circulation. The new assay may establish a potential early marker of metastatic progression.


Assuntos
Citometria de Fluxo , Neoplasias/diagnóstico , Neoplasias/patologia , Células Neoplásicas Circulantes , Biomarcadores/metabolismo , Carcinoma/diagnóstico , Carcinoma/metabolismo , Carcinoma/patologia , Linhagem Celular Tumoral , Humanos , Hipóxia/metabolismo , Neoplasias/metabolismo , Células Neoplásicas Circulantes/metabolismo , Células-Tronco Neoplásicas/metabolismo , Esferoides Celulares , Estresse Fisiológico , Células Tumorais Cultivadas
13.
Neurochem Res ; 40(7): 1402-9, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25975365

RESUMO

Glutamate induced cell death mechanisms gained considerable attention lately as excessive release of extracellular glutamate was reported to cause neurodegeneration in brain areas including the retina. Conversely, pituitary adenylate cyclase-activating polypeptide (PACAP) was shown to provide neuroprotection through anti-apoptotic effects in the glutamate-model and also in other degeneration assays. Although PACAP is known to orchestrate complex intracellular signaling primarily through cAMP production, the mechanism that mediates the anti-apoptotic effect in glutamate excitotoxicity remains to be clarified. To study this mechanism we induced retinal neurodegeneration in newborn Wistar rats by subcutaneous monosodium-glutamate injection. 100 pmol PACAP and enzyme inhibitors were administered intravitreally. Levels of caspase 3, 9, and phospho-protein kinase A were assessed by Western blots. Changes in cAMP levels were detected employing a competitive immunoassay. We found that cAMP blockade by an adenylyl-cyclase inhibitor (2',4'-dideoxy-adenosine) did not abrogate the neuroprotective effect of PACAP1-38. We show that following intravitreal PACAP1-38 treatment cAMP was unaltered, consistent with the inhibitor results and phospho-protein kinase A, an effector of the cAMP pathway was also unaffected. On the other hand, blockade of the alternative phosphatidylcholine-specific PLC pathway using an inhibitor (D609CAS) abrogated the neuroprotective effects of PACAP1-38. Our results highlight PACAP1-38 ability in protecting retinal cells against apoptosis through diverse signaling cascades. It seems that at picomolar concentrations, PACAP does not trigger cAMP production, but nonetheless, exerts a significant anti-apoptotic effect through PLC activation. In conclusion, PACAP1-38 may signal via both AC and PLC activation producing the same protective outcome.


Assuntos
Apoptose , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Retina/citologia , Transdução de Sinais , Fosfolipases Tipo C/metabolismo , Animais , Animais Recém-Nascidos , AMP Cíclico/biossíntese , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ativação Enzimática , Ratos , Ratos Wistar , Retina/enzimologia , Retina/metabolismo
14.
Int J Cancer ; 133(4): 835-42, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23390035

RESUMO

Clinical observations suggest that pregnancy provides protection against cancer. The mechanisms involved, however, remain unclear. Fetal cells are known to enter the mother's circulation during pregnancy and establish microchimerism. We investigated if pregnancy-related embryonic/fetal stem cell integration plays a role in breast cancer. A high-sensitivity Y-chromosome assay was developed to trace male allogeneic cells (from male fetus) in females. Fixed-embedded samples (n = 206) from both normal and breast cancer patients were screened for microchimerism. The results were combined with matching clinicopathological and histological parameters and processed statistically. The results show that in our samples (182 informative) more than half of healthy women (56%) carried male cells in their breast tissue for decades (n = 68), while only one out of five in the cancer sample pool (21%) (n = 114) (odds ratio = 4.75, CI at 95% 2.34-9.69; p = 0.0001). The data support the notion that a biological link may exist between chimerism and tissue-integrity. The correlation, however, is non-linear, since male microchimerism in excess ("hyperchimerism") is also involved in cancer. The data suggest a link between hyperchimerism and HER2-type cancers, while decreased chimerism ("hypochimerism") associates with ER/PR-positive (luminal-type) breast cancers. Chimerism levels that correlate with protection appear to be non-random and share densities with the mammary progenitor components of the stem cell lineage in the breast. The results suggest that protection may involve stem/progenitor level interactions and implicate novel quantitative mechanisms in chimerism biology.


Assuntos
Neoplasias da Mama/genética , Mama/metabolismo , Quimerismo , Sequência de Bases , Cromossomos Humanos Y , DNA/genética , Primers do DNA , Feminino , Genes erbB-2 , Humanos , Masculino , Reação em Cadeia da Polimerase
15.
Cell Calcium ; 104: 102588, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35398674

RESUMO

Müller glia, a pillar of metabolic, volume regulatory and immune/inflammatory signaling in the mammalian retina, are among the earliest responders to mechanical stressors in the eye. Ocular trauma, edema, detachment and glaucoma evoke early inflammatory activation of Müller cells yet the identity of their mechanotransducers and signaling mechanisms downstream remains unknown. Here, we investigate expression of genes that encode putative stretch-activated calcium channels (SACs) in mouse Müller cells and study their responses to dynamical tensile loading in cells loaded with a calcium indicator dye. Transcript levels in purified glia were Trpc1>Piezo1>Trpv2>Trpv4>>Trpv1>Trpa1. Cyclic radial deformation of matrix-coated substrates produced dose-dependent increases in [Ca2+]i that were suppressed by the TRPV4 channel antagonist HC-067047 and by ablation of the Trpv4 gene. Stretch-evoked calcium responses were also reduced by knockdown and pharmacological inhibition of TRPC1 channels whereas the TRPV2 inhibitor tranilast had no effect. These data demonstrate that Müller cells are intrinsically mechanosensitive, with the response to tensile loading mediated through synergistic activation of TRPV4 and TRPC1 channels. Coupling between mechanical stress and Müller Ca2+ homeostasis has treatment implications, since many neuronal injury paradigms in the retina involve calcium dysregulation associated with inflammatory and immune signaling.


Assuntos
Células Ependimogliais , Canais de Cátion TRPC/metabolismo , Canais de Cátion TRPV , Animais , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Sinalização do Cálcio , Células Ependimogliais/metabolismo , Canais Iônicos/metabolismo , Mamíferos/metabolismo , Camundongos , Canais de Cátion TRPV/metabolismo
16.
J Comp Neurol ; 530(2): 537-552, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34350994

RESUMO

Polyglutamine repeat expansions in the Ataxin-2 (ATXN2) gene were first implicated in Spinocerebellar Ataxia Type 2, a disease associated with degeneration of motor neurons and Purkinje cells. Recent studies linked single nucleotide polymorphisms in the gene to elevated intraocular pressure in primary open angle glaucoma (POAG); yet, the localization of ATXN2 across glaucoma-relevant tissues of the vertebrate eye has not been thoroughly examined. This study characterizes ATXN2 expression in the mouse and human retina, and anterior eye, using an antibody validated in ATXN2-/- retinas. ATXN2-ir was localized to cytosolic sub compartments in retinal ganglion cell (RGC) somata and proximal dendrites in addition to GABAergic, glycinergic, and cholinergic amacrine cells in the inner plexiform layer (IPL) and displaced amacrine cells. Human, but not mouse retinas showed modest immunolabeling of bipolar cells. ATXN2 immunofluorescence was prominent in the trabecular meshwork and pigmented and nonpigmented cells of the ciliary body, with analyses of primary human trabecular meshwork cells confirming the finding. The expression of ATXN2 in key POAG-relevant ocular tissues supports the potential role in autophagy and stress granule formation in response to ocular hypertension.


Assuntos
Células Amácrinas/metabolismo , Ataxina-2/metabolismo , Glaucoma de Ângulo Aberto/fisiopatologia , Células Ganglionares da Retina/metabolismo , Grânulos de Estresse/patologia , Animais , Dendritos/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos , Polimorfismo de Nucleotídeo Único , Retina/fisiologia
17.
Front Immunol ; 13: 805076, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35432302

RESUMO

Trabecular meshwork (TM) cells are phagocytic cells that employ mechanotransduction to actively regulate intraocular pressure. Similar to macrophages, they express scavenger receptors and participate in antigen presentation within the immunosuppressive milieu of the anterior eye. Changes in pressure deform and compress the TM, altering their control of aqueous humor outflow but it is not known whether transducer activation shapes temporal signaling. The present study combines electrophysiology, histochemistry and functional imaging with gene silencing and heterologous expression to gain insight into Ca2+ signaling downstream from TRPV4 (Transient Receptor Potential Vanilloid 4), a stretch-activated polymodal cation channel. Human TM cells respond to the TRPV4 agonist GSK1016790A with fluctuations in intracellular Ca2+ concentration ([Ca2+]i) and an increase in [Na+]i. [Ca2+]i oscillations coincided with monovalent cation current that was suppressed by BAPTA, Ruthenium Red and the TRPM4 (Transient Receptor Potential Melastatin 4) channel inhibitor 9-phenanthrol. TM cells expressed TRPM4 mRNA, protein at the expected 130-150 kDa and showed punctate TRPM4 immunoreactivity at the membrane surface. Genetic silencing of TRPM4 antagonized TRPV4-evoked oscillatory signaling whereas TRPV4 and TRPM4 co-expression in HEK-293 cells reconstituted the oscillations. Membrane potential recordings suggested that TRPM4-dependent oscillations require release of Ca2+ from internal stores. 9-phenanthrol did not affect the outflow facility in mouse eyes and eyes from animals lacking TRPM4 had normal intraocular pressure. Collectively, our results show that TRPV4 activity initiates dynamic calcium signaling in TM cells by stimulating TRPM4 channels and intracellular Ca2+ release. It is possible that TRPV4-TRPM4 interactions downstream from the tensile and compressive impact of intraocular pressure contribute to homeostatic regulation and pathological remodeling within the conventional outflow pathway.


Assuntos
Canais de Cátion TRPM , Malha Trabecular , Animais , Sinalização do Cálcio , Células HEK293 , Humanos , Mecanotransdução Celular , Camundongos , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Malha Trabecular/metabolismo
18.
Neurochem Res ; 36(8): 1464-74, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21512746

RESUMO

Although L-glutamate is the main excitatory neurotransmitter in the retina, excess glutamate level triggers severe neuronal damages. Therefore, monosodium glutamate has been used to probe neurodegenerative mechanisms but precise toxicity schedule is not available in vivo. We report, for the first time, a temporal analysis of apoptotic processes induced by subcutaneously applied monosodium glutamate. We investigated the glutamate triggered subcellular processes over a time scale of 48 h in neonatal retina. We employed immunoblots to measure the level of activated apoptotic factors and immunocytochemistry to reveal the dying cells. Upregulation of active caspase-9 started at 3 h and peaked at 6 h post-injection. Activations of caspase-3, caspase-6 and caspase-7 consistent with their late-phase roles increased at 6 h post-injection. The apoptotic processes were terminated by 24 h post-injection. Caspase 12 and calpain-2 seemed unaffected by subcutaneous monosodium glutamate administration. Uniquely, we found that the ubiquitous calpain-1 is not expressed in newborn rat retina.


Assuntos
Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Retina/efeitos dos fármacos , Retina/patologia , Glutamato de Sódio/farmacologia , Animais , Calpaína/metabolismo , Caspases/metabolismo , Ácido Glutâmico/metabolismo , Isoenzimas/metabolismo , Ratos , Ratos Wistar , Retina/citologia , Neurônios Retinianos/citologia , Neurônios Retinianos/efeitos dos fármacos , Neurônios Retinianos/patologia , Fatores de Tempo
19.
Invest Ophthalmol Vis Sci ; 61(4): 2, 2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32271891

RESUMO

Purpose: Contact lenses, osmotic stressors, and chemical burns may trigger severe discomfort and vision loss by damaging the cornea, but the signaling mechanisms used by corneal epithelial cells (CECs) to sense extrinsic stressors are not well understood. We therefore investigated the mechanisms of swelling, temperature, strain, and chemical transduction in mouse CECs. Methods: Intracellular calcium imaging in conjunction with electrophysiology, pharmacology, transcript analysis, immunohistochemistry, and bioluminescence assays of adenosine triphosphate (ATP) release were used to track mechanotransduction in dissociated CECs and epithelial sheets isolated from the mouse cornea. Results: The transient receptor potential vanilloid (TRPV) transcriptome in the mouse corneal epithelium is dominated by Trpv4, followed by Trpv2, Trpv3, and low levels of Trpv1 mRNAs. TRPV4 protein was localized to basal and intermediate epithelial strata, keratocytes, and the endothelium in contrast to the cognate TRPV1, which was confined to intraepithelial afferents and a sparse subset of CECs. The TRPV4 agonist GSK1016790A induced cation influx and calcium elevations, which were abolished by the selective blocker HC067047. Hypotonic solutions, membrane strain, and moderate heat elevated [Ca2+]CEC with swelling- and temperature-, but not strain-evoked signals, sensitive to HC067047. GSK1016790A and swelling evoked calcium-dependent ATP release, which was suppressed by HC067027 and the hemichannel blocker probenecid. Conclusions: These results demonstrate that cation influx via TRPV4 transduces osmotic and thermal but not strain inputs to CECs and promotes hemichannel-dependent ATP release. The TRPV4-hemichannel-ATP signaling axis might modulate corneal pain induced by excessive mechanical, osmotic, and chemical stimulation.


Assuntos
Epitélio Corneano/metabolismo , Mecanotransdução Celular/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Células Cultivadas , Eletrofisiologia , Feminino , Regulação da Expressão Gênica/fisiologia , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pressão Osmótica , Técnicas de Patch-Clamp , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Canais de Cátion TRPV/genética
20.
Invest Ophthalmol Vis Sci ; 60(2): 770-778, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30795011

RESUMO

Purpose: PACAP1-38, a member of the secretin/glucagon superfamily, is expressed in the developing retina with documented neuroprotective effects. However, its function in retinal cell differentiation has yet to be elucidated. Our goals, therefore, were to identify PAC1 expressing cells morphologically, investigate the PACAP1-38 action functionally, and establish PACAP1-38 regulated events developmentally during the first postnatal week in rat retina. Methods: P1 retinal sections or whole mounts of Wistar rats were used to reveal PAC1 and calbindin immunoreactive structures. P1, P3, or P7 pups were injected intravitreally with 100 pmol PACAP1-38. Tissues were harvested 24 hours post-treatment, then processed for calbindin immunohistochemistry to determine horizontal cell number, or 6, 12, 24 hours post-treatment for real-time PCR and immunoblots to detect PCNA expression. To localize proliferating cells, anti-PCNA antibody was applied. Results: We showed various PAC1 expressing cells in RPE, NBL, and GCL in P1 retina including calbindin positive horizontal cells. We found that PACAP1-38 induced a marked cell number increase at P3 and P7 and showed upregulated cell proliferation as its mechanism; however, it was ineffective at P1. PACAP1-38 induced proliferative cells localized in the NBL, and double-marker studies demonstrated that the induced proliferative cells were horizontal cells. Conclusions: PACAP1-38 appears to act in retinal differentiation by inducing mitosis selectively in a time and cell specific manner through PAC1. The control of horizontal cell proliferation raises the novel possibilities that (1) PACAP1-38 may be a major player in retinal patterning and (2) PACAP signaling may be critical in retinoblastoma.


Assuntos
Substâncias de Crescimento/fisiologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/fisiologia , Retina/crescimento & desenvolvimento , Células Horizontais da Retina/citologia , Animais , Western Blotting , Calbindinas/metabolismo , Contagem de Células , Diferenciação Celular , Proliferação de Células , Feminino , Expressão Gênica , Masculino , Microscopia Confocal , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Retina/metabolismo , Células Horizontais da Retina/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa