Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Phys Chem Chem Phys ; 25(39): 26894-26905, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37782629

RESUMO

Heliobacteria are anoxygenic phototrophs that have a Type I homodimeric reaction center containing bacteriochlorophyll g (BChl g). Previous experimental studies have shown that in the presence of light and dioxygen, BChl g is converted into 81-OH-chlorophyll aF (hereafter Chl aF), with an accompanying loss of light-driven charge separation. These studies suggest that the reaction center only loses the ability to transfer electrons once both BChl g' molecules of the P800 special pair have been converted to Chl aF'. The present work confirms that the partially converted BChl g'/Chl aF' special pair remains functional in samples exposed to dioxygen by demonstrating its presence using hyperfine couplings obtained from Q-band 1H ENDOR, 2D 14N HYSCORE and DFT methods. The DFT calculations of the BChl g'/BChl g' homodimeric primary donor, which are based on the recently published X-ray crystal structure, predict that the unpaired electron spin is equally delocalized over both BChl g' molecules and provide an excellent match to the experimental hyperfine couplings of the anaerobic samples. Exposure to dioxygen leads to substantial changes in the hyperfine interactions, indicative of greater localization of the unpaired electron spin. The measured hyperfine couplings are reproduced in the DFT calculations by replacing one of the BChl g' molecules of the primary donor with a Chl aF' molecule. The calculations reveal that the spin density becomes localized on BChl g' in the heterodimeric primary donor. Time-dependent DFT calculations demonstrate that conversion of either or both of the accessory BChl g molecules and/or one of the BChl g' molecules of P800 to Chl aF' results in minor effects on the energy of the charge-separated states. In contrast, if both of the BChl g' molecules of P800 are converted a large increase in the energy of the charge-separated state occurs. This suggests that the reaction center remains functional when only one half of the dimer is converted, however, conversion of both halves of the P800 dimer leads to loss of function.


Assuntos
Bacterioclorofila A , Bacterioclorofilas , Clorofila A , Bacterioclorofilas/química , Espectroscopia de Ressonância de Spin Eletrônica
2.
Faraday Discuss ; 234(0): 195-213, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35147155

RESUMO

The solar water-splitting protein complex, photosystem II (PSII), catalyzes one of the most energetically demanding reactions in nature by using light energy to drive a catalyst capable of oxidizing water. The water oxidation reaction is catalyzed at the Mn4Ca-oxo cluster in the oxygen-evolving complex (OEC), which cycles through five light-driven S-state intermediates (S0-S4). A detailed mechanism of the reaction remains elusive as it requires knowledge of the delivery and binding of substrate water in the higher S-state intermediates. In this study, we use two-dimensional (2D) hyperfine sublevel correlation spectroscopy, in conjunction with quantum mechanics/molecular mechanics (QM/MM) and density functional theory (DFT), to probe the binding of the substrate analog, methanol, in the S2 state of the D1-N87A variant of PSII from Synechocystis sp. PCC 6803. The results indicate that the size and specificity of the "narrow" channel is altered in D1-N87A PSII, allowing for the binding of deprotonated 13C-labeled methanol at the Mn4(IV) ion of the catalytic cluster in the S2 state. This has important implications on the mechanistic models for water oxidation in PSII.


Assuntos
Complexo de Proteína do Fotossistema II , Synechocystis , Metanol/metabolismo , Oxirredução , Oxigênio/química , Complexo de Proteína do Fotossistema II/química , Synechocystis/química , Synechocystis/genética , Synechocystis/metabolismo , Água/química
3.
Proc Natl Acad Sci U S A ; 116(24): 11630-11639, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31142656

RESUMO

A major challenge to the implementation of artificial photosynthesis (AP), in which fuels are produced from abundant materials (water and carbon dioxide) in an electrochemical cell through the action of sunlight, is the discovery of active, inexpensive, safe, and stable catalysts for the oxygen evolution reaction (OER). Multimetallic molecular catalysts, inspired by the natural photosynthetic enzyme, can provide important guidance for catalyst design, but the necessary mechanistic understanding has been elusive. In particular, fundamental transformations for reactive intermediates are difficult to observe, and well-defined molecular models of such species are highly prone to decomposition by intermolecular aggregation. Here, we present a general strategy for stabilization of the molecular cobalt-oxo cubane core (Co4O4) by immobilizing it as part of metal-organic frameworks, thus preventing intermolecular pathways of catalyst decomposition. These materials retain the OER activity and mechanism of the molecular Co4O4 analog yet demonstrate unprecedented long-term stability at pH 14. The organic linkers of the framework allow for chemical fine-tuning of activity and stability and, perhaps most importantly, provide "matrix isolation" that allows for observation and stabilization of intermediates in the water-splitting pathway.

4.
J Am Chem Soc ; 143(22): 8324-8332, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34029102

RESUMO

We address the protonation state of the water-derived ligands in the oxygen-evolving complex (OEC) of photosystem II (PSII), prepared in the S2 state of the Kok cycle. We perform quantum mechanics/molecular mechanics calculations of isotropic proton hyperfine coupling constants, with direct comparisons to experimental data from two-dimensional hyperfine sublevel correlation (HYSCORE) spectroscopy and extended X-ray absorption fine structure (EXAFS). We find a low-barrier hydrogen bond with significant delocalization of the proton shared by the water-derived ligand, W1, and the aspartic acid residue D1-D61 of the D1 polypeptide. The lowering of the zero-point energy of a shared proton due to quantum delocalization precludes its release to the lumen during the S1→ S2 transition. Retention of the proton facilitates the shuttling of a proton during the isomerization of the tetranuclear manganese-calcium-oxo (Mn4Ca-oxo) cluster, from the "open" to "closed" conformation, a step suggested to be necessary for oxygen evolution from previous studies. Our findings suggest that quantum-delocalized protons, stabilized by low-barrier hydrogen bonds in model catalytic systems, can facilitate the accumulation of multiple oxidizing equivalents at low overpotentials.

5.
J Am Chem Soc ; 143(18): 7135-7143, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33877827

RESUMO

A dicopper nitrenoid complex was prepared by formal oxidative addition of the nitrenoid fragment to a dicopper(I) center by reaction with the iminoiodinane PhINTs (Ts = tosylate). This nitrenoid complex, (DPFN)Cu2(µ-NTs)[NTf2]2 (DPFN = 2,7-bis(fluorodi(2-pyridyl)methyl)-1,8-naphthyridine), is a powerful H atom abstractor that reacts with a range of strong C-H bonds to form a mixed-valence Cu(I)/Cu(II) µ-NHTs amido complex in the first example of a clean H atom transfer to a dicopper nitrenoid core. In line with this reactivity, DFT calculations reveal that the nitrenoid is best described as an iminyl (NR radical anion) complex. The nitrenoid was trapped by the addition of water to form a mixed-donor hydroxo/amido dicopper(II) complex, which was independently obtained by reaction of a Cu2(µ-OH)2 complex with an amine through a protonolysis pathway. This mixed-donor complex is an analogue for the proposed intermediate in copper-catalyzed Chan-Evans-Lam coupling, which proceeds via C-X (X = N or O) bond formation. Treatment of the dicopper(II) mixed donor complex with MgPh2(THF)2 resulted in generation of a mixture that includes both phenol and a previously reported dicopper(I) bridging phenyl complex, illustrating that both reduction of dicopper(II) to dicopper(I) and concomitant C-X bond formation are feasible.


Assuntos
Complexos de Coordenação/química , Cobre/química , Iminas/química , Complexos de Coordenação/síntese química , Elétrons , Modelos Moleculares , Estrutura Molecular , Oxirredução
6.
Phys Chem Chem Phys ; 22(11): 6457-6467, 2020 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-32152610

RESUMO

Chloracidobacterium (C.) thermophilum is a microaerophilic, chlorophototrophic species in the phylum Acidobacteria that uses homodimeric type-1 reaction centers (RC) to convert light energy into chemical energy using (bacterio)chlorophyll ((B)Chl) cofactors. Pigment analyses show that these RCs contain BChl aP, Chl aPD, and Zn2+-BChl aP' in the approximate ratio 7.1 : 5.4 : 1. However, the functional roles of these three different Chl species are not yet fully understood. It was recently demonstrated that Chl aPD is the primary electron acceptor. Because Zn2+-(B)Chl aP' is present at low abundance, it was suggested that the primary electron donor might be a dimer of Zn2+-BChl aP' molecules. In this study, we utilize isotopic enrichment and high-resolution two-dimensional (2D) 14N and 67Zn hyperfine sublevel correlation (HYSCORE) spectroscopy to demonstrate that the primary donor cation, P840+, in the C. thermophilum RC is indeed a Zn2+-BChl aP' dimer. Density functional theory (DFT) calculations and the measured electron-nuclear hyperfine parameters of P840+ indicate that the electron spin density on P840+ is distributed nearly symmetrically over two Zn2+-(B)Chl aP' molecules as expected in a homodimeric RC. To our knowledge this is the only example of a photochemical RC in which the Chl molecules of the primary donor are metallated differently than those of the antenna.


Assuntos
Acidobacteria/química , Bacterioclorofila A/química , Processos Fotoquímicos , Zinco/química , Metabolismo Energético , Luz , Análise Espectral
7.
Phys Chem Chem Phys ; 21(17): 8721-8728, 2019 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-30968099

RESUMO

The photosynthetic protein complex, photosystem II (PSII), conducts the light-driven water-splitting reaction with unrivaled efficiency. Proton-coupled electron transfer (PCET) reactions at the redox-active tyrosine residues are thought to play a critical role in the water-splitting chemistry. Addressing the fundamental question as to why the tyrosine residue, YZ, is kinetically competent in comparison to a symmetrically placed tyrosine residue, YD, is important for the elucidation of the mechanism of PCET in the water-splitting reaction of PSII. Here, using all-quantum-mechanical calculations we study PCET at the YZ and YD residues of PSII. We find that when YZ is in its protein matrix under physiological conditions, the HOMO of YZ constitutes the HOMO of the whole system. In contrast, the HOMO of YD is buried under the electronic states localized elsewhere in the protein matrix and PCET at YD requires the transfer of the phenolic proton, which elevates the HOMO of YD to become the HOMO of the whole system. This leads to the oxidation of YD, albeit on a slower timescale. Our study reveals that the key differences between the electronic structure of YZ and YD are primarily determined by the protonation state of the respective hydrogen-bonding partners, D1-His190 and D2-His189, or more generally by the H-bonding network of the protein matrix.


Assuntos
Modelos Moleculares , Complexo de Proteína do Fotossistema II/química , Transporte de Elétrons/efeitos da radiação , Ligação de Hidrogênio/efeitos da radiação , Cinética , Oxirredução , Fotossíntese/efeitos da radiação , Conformação Proteica , Prótons , Teoria Quântica , Tirosina/química , Água/química
8.
Phys Chem Chem Phys ; 21(39): 22160, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31552964

RESUMO

Correction for 'Significance of hydrogen bonding networks in the proton-coupled electron transfer reactions of photosystem II from a quantum-mechanics perspective' by Jun Chai et al., Phys. Chem. Chem. Phys., 2019, 21, 8721-8728.

9.
Biochim Biophys Acta ; 1857(5): 548-556, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26334844

RESUMO

Site-directed spin labeling electron paramagnetic resonance (SDSL EPR) spectroscopy is a powerful tool to determine solvent accessibility, side-chain dynamics, and inter-spin distances at specific sites in biological macromolecules. This information provides important insights into the structure and dynamics of both natural and designed proteins and protein complexes. Here, we discuss the application of SDSL EPR spectroscopy in probing the charge-transfer cofactors in photosynthetic reaction centers (RC) such as photosystem I (PSI) and the bacterial reaction center (bRC). Photosynthetic RCs are large multi-subunit proteins (molecular weight≥300 kDa) that perform light-driven charge transfer reactions in photosynthesis. These reactions are carried out by cofactors that are paramagnetic in one of their oxidation states. This renders the RCs unsuitable for conventional nuclear magnetic resonance spectroscopy investigations. However, the presence of native paramagnetic centers and the ability to covalently attach site-directed spin labels in RCs makes them ideally suited for the application of SDSL EPR spectroscopy. The paramagnetic centers serve as probes of conformational changes, dynamics of subunit assembly, and the relative motion of cofactors and peptide subunits. In this review, we describe novel applications of SDSL EPR spectroscopy for elucidating the effects of local structure and dynamics on the electron-transfer cofactors of photosynthetic RCs. Because SDSL EPR Spectroscopy is uniquely suited to provide dynamic information on protein motion, it is a particularly useful method in the engineering and analysis of designed electron transfer proteins and protein networks. This article is part of a Special Issue entitled Biodesign for Bioenergetics--the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson.


Assuntos
Domínio Catalítico , Complexo de Proteínas da Cadeia de Transporte de Elétrons/química , Fotossíntese , Engenharia de Proteínas/métodos , Marcadores de Spin , Animais , Domínio Catalítico/genética , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Transporte de Elétrons/genética , Complexo de Proteínas da Cadeia de Transporte de Elétrons/genética , Humanos , Modelos Moleculares , Mutagênese Sítio-Dirigida/métodos , Fotossíntese/genética , Complexo de Proteína do Fotossistema I/química , Complexo de Proteína do Fotossistema I/genética , Complexo de Proteína do Fotossistema I/metabolismo
10.
J Am Chem Soc ; 139(15): 5378-5386, 2017 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-28394586

RESUMO

A discrete, dicopper µ-alkynyl complex, [Cu2(µ-η1:η1-C≡C(C6H4)CH3)DPFN]NTf2 (DPFN = 2,7-bis(fluoro-di(2-pyridyl)methyl)-1,8-naphthyridine; NTf2- = N(SO2CF3)2-), reacts with p-tolylazide to yield a dicopper complex with a symmetrically bridging 1,2,3-triazolide, [Cu2(µ-η1:η1-(1,4-bis(4-tolyl)-1,2,3-triazolide))DPFN]NTf2. This transformation exhibits bimolecular reaction kinetics and represents a key step in a proposed, bimetallic mechanism for copper-catalyzed azide-alkyne cycloaddition (CuAAC). The µ-alkynyl and µ-triazolide complexes undergo reversible redox events (by cyclic voltammetry), suggesting that a cycloaddition pathway involving mixed-valence dicopper species might also be possible. Synthesis and characterization of the mixed-valence µ-alkynyl dicopper complex, [Cu2(µ-η1:η1-C≡C(C6H4)CH3)DPFN](NTf2)2, revealed an electronic structure with an unexpected partially delocalized spin, as evidenced by electron paramagnetic resonance spectroscopy. Studies of the mixed-valence µ-alkynyl complex's reactivity suggest that a mixed-valence pathway is less likely than one involving intermediates with only copper(I).


Assuntos
Alcinos/química , Azidas/química , Cobre/química , Reação de Cicloadição , Compostos Organometálicos/química , Catálise , Modelos Moleculares , Estrutura Molecular
12.
Int J Syst Evol Microbiol ; 67(7): 2323-2327, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28693683

RESUMO

Strain JA878T was purified from a photoheterotrophic enrichment obtained from a sediment sample of a brown pond near Nari Salt Pan, Bhavnagar, Gujarat, India. Cells of the isolate were coccoid, motile by means of single polar flagellum and Gram-stain-negative. The internal photosynthetic membrane architecture was vesicular. Strain JA878T contained bacteriochlorophyll a and spirilloxanthin series of carotenoids with rhodopin (>85 %) as the major component. Strain JA878T grew optimally at pH 10-11, and had no requirement for NaCl (tolerated up to 6 %, w/v) or vitamins for growth. C16 : 1ω7c/C16 : 1ω6c, C18 : 1ω7c/C18 : 1ω6c and C16 : 0 were identified as the major fatty acids (>10 %). Phosphatidylglycerol, phosphatidylethanolamine, aminophospholipid and an unknown polar lipid were identified. Q8 was the predominant quinone system in strain JA878T. The DNA G+C content was 62.4 mol%. Highest 16S rRNA gene sequence similarity through EzTaxon-based blast analysis of strain JA878T was found with the type strains of Thiorhodococcus fuscus (99 %), Thiorhodococcus kakinadensis (98.6 %), Thiohalobacter thiocyanaticus (98.4 %), Thiophaeococcus fuscus (97.3 %) and other members of the class Gammaproteobacteria (<97.3 %), revealing a close affiliation to the genera Thiorhodococcus, Thiohalobacter and Thiophaeococcus. However, the phylogenetic treeing firmly placed the strain in the genus Thiorhodococcus. Phenotypic and chemotaxonomic evidence supported the affiliation of strain JA878T to the genus Thiorhodococcus and not to Thiohalobacter, Thiophaeococcus or other known genera of Chromatiaceae. Distinct physiological, genotypic and chemotaxonomic differences indicate that strain JA878T represents a novel species of the genus Thiorhodococcus, for which the name Thiorhodococcus alkaliphilus sp. nov. is proposed. The type strain is JA878T (=KCTC 15531T=JCM 31245T).


Assuntos
Sedimentos Geológicos/microbiologia , Filogenia , Thiotrichaceae/classificação , Microbiologia da Água , Técnicas de Tipagem Bacteriana , Bacterioclorofila A/química , Carotenoides/química , DNA Bacteriano/genética , Ácidos Graxos/química , Índia , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Thiotrichaceae/genética , Thiotrichaceae/isolamento & purificação , Vitamina K 2/análogos & derivados , Vitamina K 2/química
13.
Inorg Chem ; 56(7): 3763-3772, 2017 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-28333456

RESUMO

The Ru(II) and BF2 complexes of calixsmaragdyrin were prepared under simple reaction conditions and characterized by HR-MS, 1D and 2D NMR spectroscopy, optical spectroscopy, and electrochemistry, and the structure of the Ru(II) complex of calixsmaragdyrin was elucidated by X-ray crystallography. The crystal structure of the Ru(II) complex revealed that the Ru(II) ion is hexacoordinate with the three pyrrole nitrogen ligands from the tripyrrin unit of the calixsmaragdyrin macrocycle, and the remaining coordination sites of Ru(II) ion were occupied by two carbonyl groups and one hydroxyl (-OH) group. The calixsmaragdyrin macrocycle in the Ru(II) complex was distorted with a dome-like structure. In the BF2 complex of calixsmaragdyrin, the BF2 unit was bound to two pyrrolic nitrogens of the dipyrrin moiety of calixsmaragdyrin as deduced by detailed 1- and 2-dimensional NMR spectroscopy studies. The Ru(II) complex displayed a strong Soret-like absorption band at 449 nm with the absence of Q-bands, whereas the BF2 complex showed a Soret-like band at 475 nm with two well-defined Q-bands at 787 and 883 nm, respectively. Quantum mechanical DFT calculations yielded relaxed equilibrium structures that were similar to the X-ray crystal structures, and the related charge density distributions indicated that the d orbital of the Ru(II) ion was contributing to the HOMO and LUMO states. In addition, TD-DFT calculations successfully reproduced the large bathochromic shifts, oscillator strengths, and electronic transitions that were observed in the experimental absorption spectra of all three complexes. Both the Ru(II) and the BF2 complexes of calixsmaragdyrin were stable under redox conditions.

14.
Inorg Chem ; 56(22): 13913-13929, 2017 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-29087196

RESUMO

We report the formation of new cyclic porphyrin tetrads 1 and 2, which were obtained from the reaction between dihydroxytin(IV) porphyrin and cis-dihydroxy-21-thiaporphyrin/21,23-dithiaporphyrin. The unique oxophilicity of tin(IV) porphyrin was the driving force for the formation of these tetrads. Moreover, these novel tetrads represent the first examples of cyclic porphyrins containing tin(IV) that are constructed exclusively on the basis of the "Sn-O" interaction without any other complementary, noncompetitive mode of interactions. The molecular structures of the cyclic tetrads have been investigated by matrix-assisted laser desorption ionization time-of-flight mass spectrometry, NMR spectroscopy, quantum-mechanical calculations, and, in one case, single-crystal X-ray crystallography. The X-ray structure revealed that the two cis-dihydroxy-N2S2 porphyrins were coordinated at the axial positions of two tin(IV) porphyrins, leading to the symmetric cyclic tetrad structure. The optical properties of tetrads were studied, and these compounds were stable under redox conditions. Preliminary photophysical studies carried out on the tetrads indicated efficient energy transfer from tin(IV) porphyrin to the thiaporphyrin unit, which highlights their potential applications in energy and electron transfer in the future.

15.
Inorg Chem ; 56(3): 1626-1637, 2017 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-28098983

RESUMO

High-valent dichloride and dimethylniobium complexes 1 and 2 bearing tert-butylimido and N,N'-bis(2,4,6-trimethylphenyl)-ß-diketiminate (BDIAr) ligands were prepared. The dimethyl complex reacted with dihydrogen to release methane and generate the hydride-bridged diniobium(IV) complex 3 in high yield. One-electron oxidation of 3 with silver salts resulted in the release of dihydrogen and conversion to a mixed-valent NbIII-NbIV complex, 4, that displayed a frozen-solution X-band electron paramagnetic resonance signal consistent with a slight dissymmetry between the two Nb centers. Spectroscopic and computational analysis supported the presence of Nb-Nb σ-bonding interactions in both 3 and 4. Finally, one-electron reduction of 4 resulted in conversion to the highly dissymmetric NbV-NbV dimer 5 that formed from the reductive C-N bond cleavage of one of the BDIAr supporting ligands.

16.
Eur J Inorg Chem ; 2017(18): 2484-2487, 2017 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-30505212

RESUMO

A strong σ-donating cyclic (alkyl)(amino) carbene (cAAC) triggers rearrangement of the silyl(aryl) amido ligand -N(SiMe3)Dipp (Dipp = 2,6-diisopropylphenyl) in the coordination sphere of titanium(III) to afford a novel zwitterionic titanium imido complex with a TiCH2SiMe2[cAAC] linkage. Reduction of this species produces a new DippN=Ti imido complex containing a cAAC-centered radical species, characterized by single crystal diffraction analysis and electron paramagnetic resonance spectroscopy.

17.
J Am Chem Soc ; 138(20): 6484-91, 2016 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-27176131

RESUMO

The synthesis of discrete, cationic binuclear µ-aryl dicopper complexes [Cu2(µ-η(1):η(1)-Ar)DPFN]X (Ar = C6H5, 3,5-(CF3)2C6H3, and C6F5; DPFN = 2,7-bis(fluoro-di(2-pyridyl)methyl)-1,8-naphthyridine; X = BAr4(-) and NTf2(-); Tf = SO2CF3) was achieved by treatment of a dicopper complex [Cu2(µ-η(1):η(1)-NCCH3)DPFN]X2 (X = PF6(-) and NTf2(-)) with tetraarylborates. Structural characterization revealed symmetrically bridging aryl groups, and (1)H NMR spectroscopy evidenced the same structure in solution at 24 °C. Electrochemical investigation of the resulting arylcopper complexes uncovered reversible redox events that led to the synthesis and isolation of a rare mixed-valence organocopper complex [Cu2(µ-η(1):η(1)-Ph)DPFN](NTf2)2 in high yield. The solid-state structure of the mixed-valence µ-phenyl complex exhibits inequivalent copper centers, despite a short Cu···Cu distance. Electronic and variable-temperature electron paramagnetic resonance spectroscopy of the mixed-valence µ-phenyl complex suggest that the degree of spin localization is temperature-dependent, with a high degree of spin localization observed at lower temperatures. Electronic structure calculations agree with the experimental results and suggest that the spin is localized almost entirely on one metal center.


Assuntos
Boro/química , Complexos de Coordenação/química , Cobre/química , Ânions , Cátions , Estrutura Molecular , Análise Espectral/métodos
18.
Chemistry ; 22(28): 9699-708, 2016 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-27245271

RESUMO

Two unprecedented mixed B(III) /P(V) complexes of meso-triaryl 25-oxasmaragdyrins were synthesized in appreciable yields under mild reaction conditions. These unusual 25-oxasmaragdyrin complexes containing one or two seven-membered heterocyclic rings comprised of five different atoms (B, C, N, O, and P) were prepared by reacting B(OH)(Ph)-smaragdyrin and B(OH)2 -smaragdyrin complexes, respectively, with POCl3 in toluene at reflux temperature. The products were characterized by HRMS and 1D- and 2D-NMR spectroscopy. X-ray crystallography of one of the mixed B(III) /P(V) smaragdyrin complexes indicated that the macrocycle is significantly distorted and contains a stable seven-membered heterocyclic ring within the macrocycle. The bands in the absorption and emission spectra were bathochromically shifted with reduced quantum yields and singlet-state lifetimes relative to the free base, meso-triaryl 25-oxasmaragdyrin. The mixed B(III) /P(V) complexes were difficult to oxidize but easier to reduce than the free base. The DFT-optimized structure of the 25-oxasmaragdyrin complex with two seven-membered heterocycles indicated that it was a bicyclic spiro compound with two half-chair-like conformers. This was in contrast to the chair-like conformation of the complex with a single seven-membered heterocyclic ring. Moreover, incorporation of a second phosphate group in the former case stabilized the bonding geometry and resulted in higher stability, which was reflected in the bathochromic shift of the absorption spectra, more-positive oxidation potential, and less-negative reduction potential.

19.
Int J Syst Evol Microbiol ; 66(1): 165-171, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26475698

RESUMO

A yellowish brown, phototrophic, purple non-sulfur bacterium, strain JA924T, was isolated in pure culture from a brackish water sample collected from an estuary. Single cells were oval to rod-shaped, non-motile and Gram-stain-negative and had a vesicular architecture of intracellular photosynthetic membranes. Bacteriochlorophyll-a and carotenoids of the spheroidene series were present as photosynthetic pigments. Photolithoautotrophy, chemo-organoheterotrophy and photo-organoheterotrophy were the growth modes observed. Strain JA924T had complex growth requirements. Strain JA924T was mesophilic and moderately halophilic. The DNA G+C content was 64 mol% (HPLC). The major cellular fatty acids were C18 : 1ω7c/C18 : 1ω6c, C16 : 0 and C18 : 0. The major quinone was ubiquinone-10 (Q-10). Phosphatidylglycerol, phosphatidylethanolamine, sulfolipid and an aminolipid were the main polar lipids of strain JA924T. EzTaxon-e blast searches based on the 16S rRNA gene sequence of JA924T revealed highest similarity with Rhodovulum mangrovi AK41T (98.19 %) and other members of the genus Rhodovulum ( < 95.71 %). Strain JA924T was further identified to be distantly related to Rhodovulum mangrovi AK41T ( < 29 % based on DNA-DNA hybridization and ΔTm (>5 °C). Phenotypic, chemotaxonomic and molecular differences indicate that strain JA924T represents a novel species of the genus Rhodovulum, for which the name Rhodovulum aestuarii sp. nov. is proposed. The type strain is JA924T ( = LMG 29031T = KCTC 15485T).


Assuntos
Filogenia , Rhodovulum/classificação , Águas Salinas , Técnicas de Tipagem Bacteriana , Bacterioclorofila A , Composição de Bases , Carotenoides/química , DNA Bacteriano/genética , Estuários , Ácidos Graxos/química , Índia , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Rhodovulum/genética , Rhodovulum/isolamento & purificação , Análise de Sequência de DNA , Ubiquinona/análogos & derivados , Ubiquinona/química
20.
Inorg Chem ; 55(14): 6873-81, 2016 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-27356113

RESUMO

We present the first evidence for an unusual stable metallocene-containing expanded porphyrinoid macrocycle that was synthesized by condensing one equivalent of 1,1'-bis[phenyl(2-pyrroyl)methyl]ferrocene with one equivalent of 5,10-di(p-tolyl)-16-oxa-15,17-dihydrotripyrrane under acid-catalyzed conditions. The formation of ferrocene-incorporated expanded porphyrin macrocycle was confirmed by HR-MS and 1D/2D NMR spectroscopy. The macrocycle was nonaromatic and displayed absorption bands in the region of 420-550 nm. The molecular and electronic structure of the ferrocene-incorporated expanded porphyrin was investigated by DFT methods. The DFT calculations indicated a partially twisted structure of the molecule, and the extent of torsional distortion was larger than previously observed for ruthenocenoporphyrinoids and ferrocenothiaporphyrin. The HOMO and LUMO states that were obtained from the DFT calculations indicated partial charge density on all four pyrrole nitrogen atoms and the furanyl oxygen atom in the HOMO state and partial charge density on the α and ß carbon atoms in the LUMO state. In addition, the ferrocene moiety displayed the presence of partial charge density on the Fe atom and the cp rings in both the HOMO and LUMO states. Moreover, DFT studies of the diprotonated form of macrocycle indicated that the diprotonated form also retained a synclinal conformation and that its torsional strain was slightly higher than its free base form.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa