Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 440(7084): 637-43, 2006 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-16554755

RESUMO

Identification of protein-protein interactions often provides insight into protein function, and many cellular processes are performed by stable protein complexes. We used tandem affinity purification to process 4,562 different tagged proteins of the yeast Saccharomyces cerevisiae. Each preparation was analysed by both matrix-assisted laser desorption/ionization-time of flight mass spectrometry and liquid chromatography tandem mass spectrometry to increase coverage and accuracy. Machine learning was used to integrate the mass spectrometry scores and assign probabilities to the protein-protein interactions. Among 4,087 different proteins identified with high confidence by mass spectrometry from 2,357 successful purifications, our core data set (median precision of 0.69) comprises 7,123 protein-protein interactions involving 2,708 proteins. A Markov clustering algorithm organized these interactions into 547 protein complexes averaging 4.9 subunits per complex, about half of them absent from the MIPS database, as well as 429 additional interactions between pairs of complexes. The data (all of which are available online) will help future studies on individual proteins as well as functional genomics and systems biology.


Assuntos
Proteoma/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Evolução Biológica , Sequência Conservada , Espectrometria de Massas , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Ligação Proteica , Proteoma/química , Proteômica , Proteínas de Saccharomyces cerevisiae/química
2.
J Biol Chem ; 277(24): 21291-9, 2002 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-11923314

RESUMO

The interdependence of steps in the processing of the eukaryotic preribosomal rRNA transcripts indicate that rRNA processing, at least in part, acts as a quality control mechanism to help ensure that only functional rRNA is incorporated into mature ribosomes. In search of structural components that underlie this interdependence, we have isolated a large protein complex or RAC that contains an independent binding site for all four of the transcribed spacers in the nascent pre-rRNA. In this study the RAC-binding site in the internal transcribed spacer 2 sequence of Schizosaccharomyces pombe rRNA transcripts was identified, and the influence of this site on rRNA maturation was assessed. Modification exclusion analyses indicate that the protein complex interacts with a helical domain previously shown to contain features common to both the internal transcribed spacer 1 and the 3'-external transcribed spacer. Mutagenic analyses in vitro confirm an interaction with this sequence, and parallel analyses in vivo indicated a critical role in both the maturation of the rRNA components of the large subunit as well as the 18 S rRNA component of the small subunit. Hybridization analyses also indicated greatly elevated levels of unprocessed nascent RNA. These effects are contrasted with mutations in other regions of the secondary structure that resulted in some reduction of plasmid-derived mature rRNA but no elevated levels of the precursor molecules. The significance with respect to rRNA maturation and the interdependences in rRNA processing are discussed.


Assuntos
DNA Espaçador Ribossômico/metabolismo , Precursores de RNA/metabolismo , RNA Mensageiro/metabolismo , Schizosaccharomyces/metabolismo , Proteínas rac de Ligação ao GTP/química , Sequência de Bases , Sítios de Ligação , Dietil Pirocarbonato/farmacologia , Deleção de Genes , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Conformação de Ácido Nucleico , Hibridização de Ácido Nucleico , Plasmídeos/metabolismo , RNA/metabolismo , RNA Ribossômico/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo
3.
Mol Cell ; 13(2): 225-39, 2004 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-14759368

RESUMO

A remarkably large collection of evolutionarily conserved proteins has been implicated in processing of noncoding RNAs and biogenesis of ribonucleoproteins. To better define the physical and functional relationships among these proteins and their cognate RNAs, we performed 165 highly stringent affinity purifications of known or predicted RNA-related proteins from Saccharomyces cerevisiae. We systematically identified and estimated the relative abundance of stably associated polypeptides and RNA species using a combination of gel densitometry, protein mass spectrometry, and oligonucleotide microarray hybridization. Ninety-two discrete proteins or protein complexes were identified comprising 489 different polypeptides, many associated with one or more specific RNA molecules. Some of the pre-rRNA-processing complexes that were obtained are discrete sub-complexes of those previously described. Among these, we identified the IPI complex required for proper processing of the ITS2 region of the ribosomal RNA primary transcript. This study provides a high-resolution overview of the modular topology of noncoding RNA-processing machinery.


Assuntos
Processamento Pós-Transcricional do RNA , RNA/química , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Northern Blotting , Proteínas Fúngicas/química , Espectrometria de Massas , Modelos Biológicos , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas , RNA/metabolismo , RNA Ribossômico/metabolismo , Saccharomyces cerevisiae/fisiologia , Homologia de Sequência de Aminoácidos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa