Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 607(7919): 610-616, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35831510

RESUMO

Mechanistic target of rapamycin complex 1 (mTORC1) controls growth by regulating anabolic and catabolic processes in response to environmental cues, including nutrients1,2. Amino acids signal to mTORC1 through the Rag GTPases, which are regulated by several protein complexes, including GATOR1 and GATOR2. GATOR2, which has five components (WDR24, MIOS, WDR59, SEH1L and SEC13), is required for amino acids to activate mTORC1 and interacts with the leucine and arginine sensors SESN2 and CASTOR1, respectively3-5. Despite this central role in nutrient sensing, GATOR2 remains mysterious as its subunit stoichiometry, biochemical function and structure are unknown. Here we used cryo-electron microscopy to determine the three-dimensional structure of the human GATOR2 complex. We found that GATOR2 adopts a large (1.1 MDa), two-fold symmetric, cage-like architecture, supported by an octagonal scaffold and decorated with eight pairs of WD40 ß-propellers. The scaffold contains two WDR24, four MIOS and two WDR59 subunits circularized via two distinct types of junction involving non-catalytic RING domains and α-solenoids. Integration of SEH1L and SEC13 into the scaffold through ß-propeller blade donation stabilizes the GATOR2 complex and reveals an evolutionary relationship to the nuclear pore and membrane-coating complexes6. The scaffold orients the WD40 ß-propeller dimers, which mediate interactions with SESN2, CASTOR1 and GATOR1. Our work reveals the structure of an essential component of the nutrient-sensing machinery and provides a foundation for understanding the function of GATOR2 within the mTORC1 pathway.


Assuntos
Aminoácidos , Microscopia Crioeletrônica , Complexos Multiproteicos , Nutrientes , Subunidades Proteicas , Humanos , Aminoácidos/metabolismo , Arginina , Proteínas de Transporte , Leucina , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Nutrientes/metabolismo , Domínios Proteicos , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Proteínas
2.
Nature ; 608(7921): 209-216, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35859173

RESUMO

Mechanistic target of rapamycin complex 1 (mTORC1) regulates cell growth and metabolism in response to multiple nutrients, including the essential amino acid leucine1. Recent work in cultured mammalian cells established the Sestrins as leucine-binding proteins that inhibit mTORC1 signalling during leucine deprivation2,3, but their role in the organismal response to dietary leucine remains elusive. Here we find that Sestrin-null flies (Sesn-/-) fail to inhibit mTORC1 or activate autophagy after acute leucine starvation and have impaired development and a shortened lifespan on a low-leucine diet. Knock-in flies expressing a leucine-binding-deficient Sestrin mutant (SesnL431E) have reduced, leucine-insensitive mTORC1 activity. Notably, we find that flies can discriminate between food with or without leucine, and preferentially feed and lay progeny on leucine-containing food. This preference depends on Sestrin and its capacity to bind leucine. Leucine regulates mTORC1 activity in glial cells, and knockdown of Sesn in these cells reduces the ability of flies to detect leucine-free food. Thus, nutrient sensing by mTORC1 is necessary for flies not only to adapt to, but also to detect, a diet deficient in an essential nutrient.


Assuntos
Adaptação Fisiológica , Dieta , Proteínas de Drosophila , Drosophila melanogaster , Leucina , Sestrinas , Adaptação Fisiológica/genética , Ração Animal , Animais , Autofagia , Dieta/veterinária , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Preferências Alimentares , Leucina/deficiência , Leucina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Neuroglia/metabolismo , Sestrinas/deficiência , Sestrinas/genética , Sestrinas/metabolismo , Transdução de Sinais
3.
Proc Natl Acad Sci U S A ; 121(35): e2322755121, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39163330

RESUMO

The mechanistic target of rapamycin complex 1 (mTORC1) pathway regulates cell growth and metabolism in response to many environmental cues, including nutrients. Amino acids signal to mTORC1 by modulating the guanine nucleotide loading states of the heterodimeric Rag GTPases, which bind and recruit mTORC1 to the lysosomal surface, its site of activation. The Rag GTPases are tethered to the lysosome by the Ragulator complex and regulated by the GATOR1, GATOR2, and KICSTOR multiprotein complexes that localize to the lysosomal surface through an unknown mechanism(s). Here, we show that mTORC1 is completely insensitive to amino acids in cells lacking the Rag GTPases or the Ragulator component p18. Moreover, not only are the Rag GTPases and Ragulator required for amino acids to regulate mTORC1, they are also essential for the lysosomal recruitment of the GATOR1, GATOR2, and KICSTOR complexes, which stably associate and traffic to the lysosome as the "GATOR" supercomplex. The nucleotide state of RagA/B controls the lysosomal association of GATOR, in a fashion competitively antagonized by the N terminus of the amino acid transporter SLC38A9. Targeting of Ragulator to the surface of mitochondria is sufficient to relocalize the Rags and GATOR to this organelle, but not to enable the nutrient-regulated recruitment of mTORC1 to mitochondria. Thus, our results reveal that the Rag-Ragulator complex is the central organizer of the physical architecture of the mTORC1 nutrient-sensing pathway and underscore that mTORC1 activation requires signal transduction on the lysosomal surface.


Assuntos
Aminoácidos , Lisossomos , Alvo Mecanístico do Complexo 1 de Rapamicina , Proteínas Monoméricas de Ligação ao GTP , Nutrientes , Transdução de Sinais , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Lisossomos/metabolismo , Humanos , Aminoácidos/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Nutrientes/metabolismo , Animais , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Células HEK293
5.
bioRxiv ; 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38328052

RESUMO

The ubiquitous skin colonist Staphylococcus epidermidis elicits a CD8 + T cell response pre-emptively, in the absence of an infection 1 . However, the scope and purpose of this anti-commensal immune program are not well defined, limiting our ability to harness it therapeutically. Here, we show that this colonist also induces a potent, durable, and specific antibody response that is conserved in humans and non-human primates. A series of S. epidermidis cell-wall mutants revealed that the cell surface protein Aap is a predominant target. By colonizing mice with a strain of S. epidermidis in which the parallel ß-helix domain of Aap is replaced by tetanus toxin fragment C, we elicit a potent neutralizing antibody response that protects mice against a lethal challenge. A similar strain of S. epidermidis expressing an Aap-SpyCatcher chimera can be conjugated with recombinant immunogens; the resulting labeled commensal elicits high titers of antibody under conditions of physiologic colonization, including a robust IgA response in the nasal mucosa. Thus, immunity to a common skin colonist involves a coordinated T and B cell response, the latter of which can be redirected against pathogens as a novel form of topical vaccination.

6.
Nat Commun ; 8(1): 2053, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29233960

RESUMO

Large-scale genomic analyses of human cancers have cataloged somatic point mutations thought to initiate tumor development and sustain cancer growth. However, determining the functional significance of specific alterations remains a major bottleneck in our understanding of the genetic determinants of cancer. Here, we present a platform that integrates multiplexed AAV/Cas9-mediated homology-directed repair (HDR) with DNA barcoding and high-throughput sequencing to simultaneously investigate multiple genomic alterations in de novo cancers in mice. Using this approach, we introduce a barcoded library of non-synonymous mutations into hotspot codons 12 and 13 of Kras in adult somatic cells to initiate tumors in the lung, pancreas, and muscle. High-throughput sequencing of barcoded Kras HDR alleles from bulk lung and pancreas reveals surprising diversity in Kras variant oncogenicity. Rapid, cost-effective, and quantitative approaches to simultaneously investigate the function of precise genomic alterations in vivo will help uncover novel biological and clinically actionable insights into carcinogenesis.


Assuntos
Carcinogênese/genética , Análise Mutacional de DNA/métodos , Neoplasias/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Reparo de DNA por Recombinação/genética , Animais , Sistemas CRISPR-Cas/genética , Análise Custo-Benefício , Análise Mutacional de DNA/economia , Estudos de Viabilidade , Feminino , Genômica/economia , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Masculino , Camundongos , Mutação , Neoplasias/patologia , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa