Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Stem Cells ; 34(12): 2875-2888, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27570947

RESUMO

While much progress has been made in the resolution of the cellular hierarchy underlying cardiogenesis, our understanding of chamber-specific myocardium differentiation remains incomplete. To better understand ventricular myocardium differentiation, we targeted the ventricle-specific gene, Irx4, in mouse embryonic stem cells to generate a reporter cell line. Using an antibiotic-selection approach, we purified Irx4+ cells in vitro from differentiating embryoid bodies. The isolated Irx4+ cells proved to be highly proliferative and presented Cxcr4, Pdgfr-alpha, Flk1, and Flt1 on the cell surface. Single Irx4+ ventricular progenitor cells (VPCs) exhibited cardiovascular potency, generating endothelial cells, smooth muscle cells, and ventricular myocytes in vitro. The ventricular specificity of the Irx4+ population was further demonstrated in vivo as VPCs injected into the cardiac crescent subsequently produced Mlc2v+ myocytes that exclusively contributed to the nascent ventricle at E9.5. These findings support the existence of a newly identified ventricular myocardial progenitor. This is the first report of a multipotent cardiac progenitor that contributes progeny specific to the ventricular myocardium. Stem Cells 2016;34:2875-2888.


Assuntos
Ventrículos do Coração/citologia , Proteínas de Homeodomínio/metabolismo , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/metabolismo , Animais , Biomarcadores/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Proliferação de Células , Separação Celular , Células Clonais , Desenvolvimento Embrionário , Células Endoteliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos de Músculo Liso/citologia , Especificidade de Órgãos , Análise de Célula Única , Fatores de Tempo
2.
Circ Res ; 114(8): 1328-45, 2014 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-24723658

RESUMO

Coronary artery disease with associated myocardial infarction continues to be a major cause of death and morbidity around the world, despite significant advances in therapy. Patients who have large myocardial infarctions are at highest risk for progressive heart failure and death, and cell-based therapies offer new hope for these patients. A recently discovered cell source for cardiac repair has emerged as a result of a breakthrough reprogramming somatic cells to induced pluripotent stem cells (iPSCs). The iPSCs can proliferate indefinitely in culture and can differentiate into cardiac lineages, including cardiomyocytes, smooth muscle cells, endothelial cells, and cardiac progenitors. Thus, large quantities of desired cell products can be generated without being limited by cellular senescence. The iPSCs can be obtained from patients to allow autologous therapy or, alternatively, banks of human leukocyte antigen diverse iPSCs are possible for allogeneic therapy. Preclinical animal studies using a variety of cell preparations generated from iPSCs have shown evidence of cardiac repair. Methodology for the production of clinical grade products from human iPSCs is in place. Ongoing studies for the safety of various iPSC preparations with regard to the risk of tumor formation, immune rejection, induction of arrhythmias, and formation of stable cardiac grafts are needed as the field advances toward the first-in-man trials of iPSCs after myocardial infarction.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/métodos , Insuficiência Cardíaca/prevenção & controle , Infarto do Miocárdio/terapia , Células-Tronco Pluripotentes/transplante , Transplante de Células-Tronco/métodos , Animais , Diferenciação Celular , Senescência Celular , Modelos Animais de Doenças , Insuficiência Cardíaca/patologia , Humanos , Camundongos , Infarto do Miocárdio/patologia , Células-Tronco Pluripotentes/citologia , Ratos , Fatores de Risco , Engenharia Tecidual/métodos , Engenharia Tecidual/tendências
3.
Elife ; 112022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35758861

RESUMO

Research and therapeutic applications using human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) require robust differentiation strategies. Efforts to improve hPSC-CM differentiation have largely overlooked the role of extracellular matrix (ECM). The present study investigates the ability of defined ECM proteins to promote hPSC cardiac differentiation. Fibronectin (FN), laminin-111, and laminin-521 enabled hPSCs to attach and expand. However, only addition of FN promoted cardiac differentiation in response to growth factors Activin A, BMP4, and bFGF in contrast to the inhibition produced by laminin-111 or laminin-521. hPSCs in culture produced endogenous FN which accumulated in the ECM to a critical level necessary for effective cardiac differentiation. Inducible shRNA knockdown of FN prevented Brachyury+ mesoderm formation and subsequent hPSC-CM generation. Antibodies blocking FN binding integrins α4ß1 or αVß1, but not α5ß1, inhibited cardiac differentiation. Furthermore, inhibition of integrin-linked kinase led to a decrease in phosphorylated AKT, which was associated with increased apoptosis and inhibition of cardiac differentiation. These results provide new insights into defined matrices for culture of hPSCs that enable production of FN-enriched ECM which is essential for mesoderm formation and efficient cardiac differentiation.


Assuntos
Proteínas da Matriz Extracelular , Células-Tronco Pluripotentes , Diferenciação Celular/fisiologia , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Fibronectinas/metabolismo , Humanos , Laminina/metabolismo , Miócitos Cardíacos/metabolismo , Células-Tronco Pluripotentes/metabolismo
4.
Biochim Biophys Acta Mol Cell Res ; 1867(3): 118559, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31634503

RESUMO

Native myocardium has limited regenerative potential post injury. Advances in lineage reprogramming have provided promising cellular sources for regenerative medicine in addition to research applications. Recently we have shown that adult mouse fibroblasts can be reprogrammed to expandable, multipotent, induced cardiac progenitor cells (iCPCs) by employing forced expression of five cardiac factors along with activation of canonical Wnt and JAK/STAT signaling. Here we aim to further characterize iCPCs by highlighting their safety, ease of attainability, and functionality within a three-dimensional cardiac extracellular matrix scaffold. Specifically, iCPCs did not form teratomas in contrast to embryonic stem cells when injected into immunodeficient mice. iCPC reprogramming was achieved in wild type mouse fibroblasts without requiring a cardiac-specific reporter, solely utilizing morphological changes to identify, clonally isolate, and expand iCPCs, thus increasing the versatility of this technology. iCPCs also show the ability to repopulate decellularized native heart scaffolds and differentiated into organized structures containing cardiomyocytes, smooth muscle, and endothelial cells. Optical mapping of recellularized scaffolds shows field-stimulated calcium transients that propagate across islands of reconstituted tissue and bipolar local stimulation demonstrates cell-cell coupling within scaffolds. Overall, iCPCs provide a readily attainable, scalable, safe, and functional cell source for a variety of application including drug discovery, disease modeling, and regenerative therapy.


Assuntos
Diferenciação Celular/genética , Células-Tronco Embrionárias , Coração/crescimento & desenvolvimento , Engenharia Tecidual , Animais , Células Endoteliais/metabolismo , Matriz Extracelular/genética , Fibroblastos/metabolismo , Humanos , Camundongos , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia
5.
Nat Protoc ; 12(5): 1029-1054, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28426026

RESUMO

Here we describe a protocol to generate expandable and multipotent induced cardiac progenitor cells (iCPCs) from mouse adult fibroblasts using forced expression of Mesp1, Tbx5, Gata4, Nkx2.5 and Baf60c (MTGNB) along with activation of Wnt and JAK/STAT signaling. This method does not use iPS cell factors and thus differs from cell activation and signaling-directed (CASD) reprogramming to cardiac progenitors. Our method is specific to direct CPC reprogramming, whereas CASD reprogramming can generate various cell types depending on culture conditions and raises the possibility of transitioning through a pluripotent cell state. The protocol describes how to isolate and infect primary fibroblasts; induce reprogramming and observe iCPC colonies; expand and characterize reprogrammed iCPCs by immunostaining, flow cytometry and gene expression; differentiate iCPCs in vitro into cardiac-lineage cells; and test the embryonic potency of iCPCs via injection into the cardiac crescent of mouse embryos. A scientist experienced in molecular cell biology and embryology can reproduce this protocol in 12-16 weeks. iCPCs can be used for studying cardiac biology, drug discovery and regenerative medicine.


Assuntos
Diferenciação Celular , Técnicas Citológicas/métodos , Fibroblastos/fisiologia , Células-Tronco/fisiologia , Animais , Proliferação de Células , Citometria de Fluxo , Expressão Gênica , Perfilação da Expressão Gênica , Imuno-Histoquímica , Camundongos , Transdução de Sinais
6.
Cell Stem Cell ; 18(3): 354-67, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26877223

RESUMO

Several studies have reported reprogramming of fibroblasts into induced cardiomyocytes; however, reprogramming into proliferative induced cardiac progenitor cells (iCPCs) remains to be accomplished. Here we report that a combination of 11 or 5 cardiac factors along with canonical Wnt and JAK/STAT signaling reprogrammed adult mouse cardiac, lung, and tail tip fibroblasts into iCPCs. The iCPCs were cardiac mesoderm-restricted progenitors that could be expanded extensively while maintaining multipotency to differentiate into cardiomyocytes, smooth muscle cells, and endothelial cells in vitro. Moreover, iCPCs injected into the cardiac crescent of mouse embryos differentiated into cardiomyocytes. iCPCs transplanted into the post-myocardial infarction mouse heart improved survival and differentiated into cardiomyocytes, smooth muscle cells, and endothelial cells. Lineage reprogramming of adult somatic cells into iCPCs provides a scalable cell source for drug discovery, disease modeling, and cardiac regenerative therapy.


Assuntos
Proliferação de Células , Técnicas de Reprogramação Celular/métodos , Reprogramação Celular , Fibroblastos/metabolismo , Mioblastos Cardíacos/metabolismo , Fatores de Transcrição/biossíntese , Animais , Sobrevivência Celular , Fibroblastos/citologia , Camundongos , Camundongos Transgênicos , Mioblastos Cardíacos/citologia , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa