Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Gen Intern Med ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38943015

RESUMO

South Asian immigrants in the United States face an elevated risk of developing type 2 diabetes (T2DM). This phenomenon has been linked to lifestyle factors and social determinants of health (SDOH) such as high-carbohydrate diet, limited physical activity, and stress from assimilation and other life challenges. Unfortunately, barriers stemming from language discordance, low health literacy, and certain cultural practices can hinder effective clinical management of T2DM among South Asian immigrants. In this perspective, we address these sociocultural barriers and propose culturally informed recommendations to improve healthcare delivery for South Asian groups and empower South Asian patients to self-manage T2DM. Our recommendations include (1) considerations and support for SDOH in South Asian communities, (2) culturally tailored healthcare delivery for South Asians, (3) mHealth technologies for T2DM education and self-management; and (4) enhanced epidemiological and South Asian-centric research.

2.
Front Genet ; 15: 1348855, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38356697

RESUMO

The field of environmental epigenetics is uniquely suited to investigate biologic mechanisms that have the potential to link stressors to health disparities. However, it is common practice in basic epigenetic research to treat race as a covariable in large data analyses in a way that can perpetuate harmful biases without providing any biologic insight. In this article, we i) propose that epigenetic researchers open a dialogue about how and why race is employed in study designs and think critically about how this might perpetuate harmful biases; ii) call for interdisciplinary conversation and collaboration between epigeneticists and social scientists to promote the collection of more detailed social metrics, particularly institutional and structural metrics such as levels of discrimination that could improve our understanding of individual health outcomes; iii) encourage the development of standards and practices that promote full transparency about data collection methods, particularly with regard to race; and iv) encourage the field of epigenetics to continue to investigate how social structures contribute to biological health disparities, with a particular focus on the influence that structural racism may have in driving these health disparities.

3.
Environ Sci Process Impacts ; 25(11): 1743-1751, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37503664

RESUMO

Lead (Pb2+) is an important developmental toxicant. The mitochondrial calcium uniporter (MCU) imports calcium ions using the mitochondrial membrane potential (MMP), and also appears to mediate the influx of Pb2+ into the mitochondria. Since our environment contains mixtures of toxic agents, it is important to consider multi-chemical exposures. To begin to develop generalizable, predictive models of interactive toxicity, we developed mechanism-based hypotheses about interactive effects of Pb2+ with other chemicals. To test these hypotheses, we exposed HepG2 (human liver) cells to Pb2+ alone and in mixtures with other mitochondria-damaging chemicals: carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP), a mitochondrial uncoupler that reduces MMP, and Ruthenium Red (RuRed), a dye that inhibits the MCU. After 24 hours, Pb2+ alone, the mixture of Pb2+ and RuRed, and the mixture of Pb2+ and FCCP caused no decrease in cell viability. However, the combination of all three exposures led to a significant decrease in cell viability at higher Pb2+ concentrations. After 48 hours, the co-exposure to elevated Pb2+ concentrations and FCCP caused a significant decrease in cell viability, and the mixture of all three showed a clear dose-response curve with significant decreases in cell viability across a range of Pb2+ concentrations. We performed ICP-MS analyses on isolated mitochondrial and cytosolic fractions and found no differences in Pb2+ uptake across exposure groups, ruling out altered cellular uptake as the mechanism for interactive toxicity. We assessed MMP following exposure and observed a decrease in membrane potential that corresponds to loss of cell viability but is likely not sufficient to be the causative mechanistic driver of cell death. This research provides a mechanistically-based framework for understanding Pb2+ toxicity in mixtures with mitochondrial toxicants.


Assuntos
Chumbo , Mitocôndrias , Humanos , Chumbo/toxicidade , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/metabolismo , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/farmacologia , Mitocôndrias/metabolismo , Canais de Cálcio/metabolismo , Canais de Cálcio/farmacologia , Cálcio
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa