Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Soft Matter ; 20(5): 1009-1017, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38197256

RESUMO

The nature of glassy states in realistic finite dimensions is still under fierce debate. Lattice models can offer valuable insights and facilitate deeper theoretical understanding. Recently, a disordered-interacting lattice model with distinguishable particles in two dimensions (2D) has been shown to produce a wide range of dynamical properties of structural glasses, including the slow and heterogeneous characteristics of the glassy dynamics, various fragility behaviors of glasses, and so on. These findings support the usefulness of this model for modeling structural glasses. An important question is whether such properties still hold in the more realistic three dimensions. In this study, we aim to extend the distinguishable-particle lattice model (DPLM) to three dimensions (3D) and explore the corresponding glassy dynamics. Through extensive kinetic Monte Carlo simulations, we found that the 3D DPLM exhibits many typical glassy behaviors, such as plateaus in the mean square displacement of particles and the self-intermediate scattering function, dynamic heterogeneity, variability of glass fragilities, and so on, validating the effectiveness of the DPLM in a broader realistic setting. The observed glassy behaviors of the 3D DPLM appear similar to those of its 2D counterpart, in accordance with recent findings in molecular models of glasses. We further investigate the role of void-induced motions in dynamical relaxations and discuss their relation to dynamic facilitation. As lattice models tend to keep the minimal but important modeling elements, they are typically much more amenable to analysis. Therefore, we envisage that the DPLM will benefit future theoretical developments, such as the configuration tree theory, towards a more comprehensive understanding of structural glasses.

2.
Soft Matter ; 20(22): 4389-4394, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38757511

RESUMO

Confining glassy polymers into films can substantially modify their local and film-averaged properties. We present a lattice model of film geometry with void-mediated facilitation behaviors but free from any elasticity effect. We analyze the spatially varying viscosity to delineate the transport properties of glassy films. The film mobility measurements reported by Yang et al., Science, 2010, 328, 1676 are successfully reproduced. The flow exhibits a crossover from a simple viscous flow to a surface-dominated regime as the temperature decreases. The propagation of a highly mobile front induced by the free surface is visualized in real space. Our approach provides a microscopic treatment of the observed glassy phenomena.

3.
Soft Matter ; 20(24): 4827, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38836328

RESUMO

Correction for 'Surface mobility gradient and emergent facilitation in glassy films' by Qiang Zhai et al., Soft Matter, 2024, https://doi.org/10.1039/D4SM00221K.

4.
J Chem Phys ; 159(4)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37486045

RESUMO

Atomic description of electrochemical systems requires reactive interaction potential to explicitly describe the chemistry between atoms and molecules and the evolving charge distribution and polarization effects. Calculating Coulomb electrostatic interactions and polarization effects requires a better estimate of the partial charge distribution in molecular systems. However, models such as reactive force fields and charge equilibration (QEq) include Coulomb interactions up to a short-distance cutoff for better computational speeds. Ignoring long-distance electrostatic interaction affects the ability to describe electrochemistry in large systems. We studied the long-range Coulomb effects among charged particles and extended the QEq method to include long-range effects. By this extension, we anticipate a proper account of Coulomb interactions in reactive molecular dynamics simulations. We validate the approach by computing charges on a series of metal-organic frameworks and some simple systems. Results are compared to regular QEq and quantum mechanics calculations. The study shows slightly overestimated charge values in the regular QEq approach. Moreover, our method was combined with Ewald summation to compute forces and evaluate the long-range effects of simple capacitor configurations. There were noticeable differences between the calculated charges with/without long-range Coulomb interactions. The difference, which may have originated from the long-range influence on the capacitor ions, makes the Ewald method a better descriptor of Coulomb electrostatics for charged electrodes. The approach explored in this study enabled the atomic description of electrochemical systems with realistic electrolyte thickness while accounting for the electrostatic effects of charged electrodes throughout the dielectric layer in devices like batteries and emerging solid-state memory.

5.
Phys Rev Lett ; 129(16): 168002, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36306762

RESUMO

Particle swaps can drastically accelerate dynamics in glass. The mechanism is expected to be vital for a fundamental understanding of glassy dynamics. To extract defining features, we propose a partial swap model with a fraction ϕ_{s} of swap-initiating particles, which can only swap locally with each other or with regular particles. We focus on the swap-dominating regime. At all temperatures studied, particle diffusion coefficients scale with ϕ_{s} in unexpected power laws with temperature-dependent exponents, consistent with the kinetic picture of glassy dynamics. At small ϕ_{s}, swap initiators, becoming defect particles, induce remarkably typical glassy dynamics of regular particles. This supports defect models of glass.

6.
Soft Matter ; 18(11): 2211-2221, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35226017

RESUMO

Using a distinguishable-particle lattice model based on void-induced dynamics, we successfully reproduce the well-known linear relation between heat capacity and temperature at very low temperatures. The heat capacity is dominated by two-level systems formed due to the strong localization of voids to two neighboring sites, and can be exactly calculated in the limit of ultrastable glasses. Similar but weaker localization at higher temperatures accounts for glass transition. The result supports the conventional two-level tunneling picture by revealing how two-level systems emerge from random particle interactions, which also cause glass transition. Our approach provides a unified framework for relating microscopic dynamics of glasses at room and cryogenic temperatures.

7.
Phys Rev Lett ; 125(26): 265703, 2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33449764

RESUMO

We perform kinetic Monte Carlo simulations of a distinguishable-particle lattice model of structural glasses with random particle interactions. By varying the interaction distribution and the average particle hopping energy barrier, we obtain an extraordinarily wide range of kinetic fragility. A stretching exponent, characterizing structural relaxation, is found to decrease with the kinetic fragility in agreement with experiments. The most fragile glasses are those exhibiting low hopping barriers and, more importantly, dramatic drops of entropies upon cooling toward the glass transition temperatures. The entropy drops reduce possible kinetic pathways and lead to dramatic slowdowns in the dynamics. In addition, the kinetic fragility is shown to correlate with a thermodynamic fragility.

8.
Phys Rev Lett ; 124(9): 095501, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32202859

RESUMO

Volume and enthalpy relaxation of glasses after a sudden temperature change has been extensively studied since Kovacs' seminal work. One observes an asymmetric approach to equilibrium upon cooling versus heating and, more counterintuitively, the expansion gap paradox, i.e., a dependence on the initial temperature of the effective relaxation time even close to equilibrium when heating. Here, we show that a distinguishable-particle lattice model can capture both the asymmetry and the paradox. We quantitatively characterize the energetic states of the particle configurations using a physical realization of the fictive temperature called the structural temperature, which, in the heating case, displays a strong spatial heterogeneity. The system relaxes by nucleation and expansion of warmer mobile domains having attained the final temperature, against cooler immobile domains maintained at the initial temperature. A small population of these cooler regions persists close to equilibrium, thus explaining the paradox.

9.
Phys Rev Lett ; 125(25): 258001, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33416386

RESUMO

Particle dynamics in supercooled liquids are often dominated by stringlike motions in which lines of particles perform activated hops cooperatively. The structural features triggering these motions, crucial in understanding glassy dynamics, remain highly controversial. We experimentally study microscopic particle dynamics in colloidal glass formers at high packing fractions. With a small polydispersity leading to glass-crystal coexistence, a void in the form of a vacancy in the crystal can diffuse reversibly into the glass and further induces stringlike motions. In the glass, a void takes the form of a quasivoid consisting of a few neighboring free volumes and is transported by the stringlike motions it induces. In fully glassy systems with a large polydispersity, similar quasivoid actions are observed. The mobile particles cluster into stringlike or compact geometries, but the compact ones can be further broken down into connected sequences of strings, establishing their general importance.

10.
Angew Chem Int Ed Engl ; 58(34): 11779-11784, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31225687

RESUMO

In this study, mechanical vibration is used for hydrogen generation and decomposition of dye molecules, with the help of BiFeO3 (BFO) square nanosheets. A high hydrogen production rate of ≈124.1 µmol g-1 is achieved under mechanical vibration (100 W) for 1 h at the resonant frequency of the BFO nanosheets. The decomposition ratio of Rhodamine B dye reaches up to ≈94.1 % after mechanical vibration of the BFO catalyst for 50 min. The vibration-induced catalysis of the BFO square nanosheets may be attributed to the piezocatalytic properties of BFO and the high specific surface area of the nanosheets. The uncompensated piezoelectric charges on the surfaces of BFO nanosheets induced by mechanical vibration result in a built-in electric field across the nanosheets. Unlike a photocatalyst for water splitting, which requires a proper band edge position for hydrogen evolution, such a requirement is not needed in piezocatalytic water splitting, where the band tilting under the induced piezoelectric field will make the conduction band of BFO more negative than the H2 /H2 O redox potential (0 V) for hydrogen generation.

11.
Phys Chem Chem Phys ; 20(32): 21105-21112, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-30074597

RESUMO

We investigate the electronic and transport properties of vanadium-doped zigzag blue phosphorus nanoribbons by first-principles quantum transport calculations. We study the spin-dependent transport properties and obtain current-voltage curves showing obvious spin polarization and negative differential behaviors. These interesting transport behaviors can be explained by the band structure of the vanadium-doped zigzag blue phosphorus nanoribbons. The tunnel magnetoresistance and spin-filtering effects under different magnetic configurations originate predominately from the symmetry matching between the band structures of the electrodes. According to our results, vanadium-doped zigzag blue phosphorus nanoribbons can be used as a perfect spin filter with a large tunnel magnetoresistance. This also indicates that blue phosphorus nanoribbons are a promising candidate for their future application in spintronics.

12.
Phys Chem Chem Phys ; 20(11): 7635-7642, 2018 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-29497734

RESUMO

We investigate the electronic and magnetic properties of substitutional metal atom impurities in two-dimensional (2D) blue phosphorene nanoribbons using first-principles calculations. In impure zigzag blue phosphorene nanoribbons (zBPNRs), a metal atom substitutes for a P atom at position "A/B". The V-"B"structure shows half-metallic properties, while the Mn-"A/B", V-"A", Fe-"B", and Cr-"A/B" structures show magnetic semiconductor properties. In addition, the Fe-"A" system shows magnetic metallic properties. On the other hand, for metal-doped armchair blue phosphorene nanoribbons (aBPNRs), the Mn-"A/B", V-"A", Fe-"A/B", and Cr-"A/B" structures show magnetic semiconductor properties, while the V-"B" structure shows nonmagnetic properties. We find that the magnetic properties of such substitutional impurities can be understood by regarding the exchange splitting of the metal 3d orbitals. And from analyzing the electron orbitals, we conclude that the main contribution of the DOS for every system comes from the d and p orbitals. These results suggest excellent candidates for new magnetic semiconductors and half-metals for spintronic devices based on blue phosphorenes.

13.
J Chem Phys ; 149(16): 164909, 2018 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-30384677

RESUMO

Free surfaces in glassy polymer films are known to induce surface mobile layers with enhanced dynamics. Using molecular dynamics simulations of a bead-spring model, we study a wide variety of layer-resolved structural and dynamical properties of polymer films equilibrated at a low temperature. Surface enhancement on thermally induced particle hopping rates is found to terminate abruptly only about 5 particle diameters from the free surface. In contrast, enhancement on the net motions of particles measured at longer time scales penetrates at least 2 particle diameters deeper. The diverse penetration depths show the existence of a peculiar sublayer, referred to as the inner-surface layer, in which surface enhanced mobility is not caused by more frequent particle hops but instead by a reduced dynamic heterogeneity associated with diminished hopping anti-correlations. Confinement effects of the free surface thus provide a unique mechanism for varying the dynamic heterogeneity and hopping correlations while keeping the hopping rate constant. Our results highlight the importance of correlations among elementary motions to glassy slowdown and suggest that dynamic facilitation is mediated via perturbations to the correlations rather than the rate of elementary motions.

14.
J Chem Phys ; 146(24): 244906, 2017 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-28668068

RESUMO

The dynamics of many glassy systems are known to exhibit string-like hopping motions each consisting of a line of particles displacing one another. By using the molecular dynamics simulations of glassy polymers, we show that these motions become highly repetitive back-and-forth motions as temperature decreases and do not necessarily contribute to net displacements. Particle hops which constitute string-like motions are reversed with a high probability, reaching 73% and beyond at low temperature. The structural relaxation rate is then dictated not by a simple particle hopping rate but instead by the rate at which particles break away from hopping repetitions. We propose that disruption of string repetitions and hence also structural relaxations are brought about by pair-interactions between strings.

15.
Nano Lett ; 16(12): 7875-7881, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27960485

RESUMO

With a similar electronic structure as that of platinum, molybdenum carbide (Mo2C) holds significant potential as a high performance catalyst across many chemical reactions. Empirically, the precise control of particle size, shape, and surface nature during synthesis largely determines the catalytic performance of nanoparticles, giving rise to the need of clarifying the underlying growth characteristics in the nucleation and growth of Mo2C. However, the high-temperature annealing involved during the growth of carbides makes it difficult to directly observe and understand the nucleation and growth processes. Here, we report on the use of advanced in situ transmission electron microscopy with atomic resolution to reveal a three-stage mechanism during the growth of Mo2C nanoparticles over a wide temperature range: initial nucleation via a mechanism consistent with spinodal decomposition, subsequent particle coalescence and monomer attachment, and final surface faceting to well-defined particles with minimum surface energy. These microscopic observations made under a heating atmosphere offer new perspectives toward the design of carbide-based catalysts, as well as the tuning of their catalytic performances.

16.
Phys Rev E ; 109(5-1): 054124, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38907442

RESUMO

Glass formers are, in general, classified as strong or fragile depending on whether their relaxation rates follow Arrhenius or super-Arrhenius temperature dependence. There are, however, notable exceptions, such as water, which exhibit a fragile-to-strong (FTS) transition and behave as fragile and strong, respectively, at high and low temperatures. In this work, the FTS transition is studied using a distinguishable-particle lattice model previously demonstrated to be capable of simulating both strong and fragile glasses [C.-S. Lee, M. Lulli, L.-H. Zhang, H.-Y. Deng, and C.-H. Lam, Phys. Rev. Lett. 125, 265703 (2020)0031-900710.1103/PhysRevLett.125.265703]. Starting with a bimodal pair-interaction distribution appropriate for fragile glasses, we show that by narrowing down the energy dispersion in the low-energy component of the distribution, a FTS transition is observed. The transition occurs at a temperature at which the stretching exponent of the relaxation is minimized, in agreement with previous molecular dynamics simulations.

17.
Langmuir ; 29(13): 4283-9, 2013 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-23461801

RESUMO

In a previous study, we calculated the surface dynamics of noisy viscoelastic supported films by using an adiabatic approximation. An expression was derived for the time-dependent power spectral density (PSD), which was found to produce good agreement with experiment. In this study, we extend the treatment to viscoelastic free-standing films. Two sets of surface capillary normal modes, namely, the squeezing and bending modes, were found. The frequency dispersion relation of the former resembles that of supported films. The latter is distinctively different and diverges at long wavelengths. By incorporating the experimental conditions, we obtained satisfactory agreement between theory and experiment.

18.
Langmuir ; 28(27): 10217-22, 2012 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-22694105

RESUMO

Surface dynamics is sometimes used to determine the rheological properties of soft materials. In typical data analyses, surface capillary waves are included without incorporating thermal noise. A phenomenological expression for the time-dependent power spectral density has been proposed to account for thermal noise and shown to agree well with experiment. In this paper, we investigate the surface dynamics of viscoelastic films with thermal noise by using an adiabatic approximation involving fast quasi-equilibrium elastic vibrations to derive the power spectral density. Our result justifies the use of the phenomenological expression.

19.
Nat Commun ; 13(1): 6144, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36253372

RESUMO

The greatest challenge that limits the application of pyro-catalytic materials is the lack of highly frequent thermal cycling due to the enormous heat capacity of ambient environment, resulting in low pyro-catalytic efficiency. Here, we introduce localized plasmonic heat sources to rapidly yet efficiently heat up pyro-catalytic material itself without wasting energy to raise the surrounding temperature, triggering a significantly expedited pyro-catalytic reaction and enabling multiple pyro-catalytic cycling per unit time. In our work, plasmonic metal/pyro-catalyst composite is fabricated by in situ grown gold nanoparticles on three-dimensional structured coral-like BaTiO3 nanoparticles, which achieves a high hydrogen production rate of 133.1 ± 4.4 µmol·g-1·h-1 under pulsed laser irradiation. We also use theoretical analysis to study the effect of plasmonic local heating on pyro-catalysis. The synergy between plasmonic local heating and pyro-catalysis will bring new opportunities in pyro-catalysis for pollutant treatment, clean energy production, and biological applications.

20.
Phys Rev E ; 104(2-1): 024131, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34525549

RESUMO

The specific-heat capacity c_{v} of glass formers undergoes a hysteresis when subjected to a cooling-heating cycle, with a larger c_{v} and a more pronounced hysteresis for fragile glasses than for strong ones. Here we show that these experimental features, including the unusually large magnitude of c_{v} of fragile glasses, are well reproduced by kinetic Monte Carlo and equilibrium study of a distinguishable particle lattice model incorporating a two-state picture of particle interactions. The large c_{v} in fragile glasses is caused by a dramatic transfer of probabilistic weight from high-energy particle interactions to low-energy ones as temperature decreases.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa