RESUMO
OBJECTIVE: Amygdala enlargement can occur in temporal lobe epilepsy, and increased amygdala volume is also reported in sudden unexpected death in epilepsy (SUDEP). Apnea can be induced by amygdala stimulation, and postconvulsive central apnea (PCCA) and generalized seizures are both known SUDEP risk factors. Neurite orientation dispersion and density imaging (NODDI) has recently provided additional information on altered amygdala microstructure in SUDEP. In a series of 24 surgical temporal lobe epilepsy cases, our aim was to quantify amygdala cellular pathology parameters that could predict enlargement, NODDI changes, and ictal respiratory dysfunction. METHODS: Using whole slide scanning automated quantitative image analysis methods, parallel evaluation of myelin, axons, dendrites, oligodendroglia, microglia, astroglia, neurons, serotonergic networks, mTOR-pathway activation (pS6) and phosphorylated tau (pTau; AT8, AT100, PHF) in amygdala, periamygdala cortex, and white matter regions of interest were compared with preoperative magnetic resonance imaging data on amygdala size, and in 13 cases with NODDI and evidence of ictal-associated apnea. RESULTS: We observed significantly higher glial labeling (Iba1, glial fibrillary acidic protein, Olig2) in amygdala regions compared to cortex and a strong positive correlation between Olig2 and Iba1 in the amygdala. Larger amygdala volumes correlated with lower microtubule-associated protein (MAP2), whereas higher NODDI orientation dispersion index correlated with lower Olig2 cell densities. In the three cases with recorded PCCA, higher MAP2 and pS6-235 expression was noted than in those without. pTau did not correlate with SUDEP risk factors, including seizure frequency. SIGNIFICANCE: Histological quantitation of amygdala microstructure can shed light on enlargement and diffusion imaging alterations in epilepsy to explore possible mechanisms of amygdala dysfunction, including mTOR pathway activation, that in turn may increase the risk for SUDEP.
Assuntos
Tonsila do Cerebelo , Epilepsia do Lobo Temporal , Imageamento por Ressonância Magnética , Morte Súbita Inesperada na Epilepsia , Humanos , Epilepsia do Lobo Temporal/patologia , Epilepsia do Lobo Temporal/diagnóstico por imagem , Tonsila do Cerebelo/patologia , Tonsila do Cerebelo/diagnóstico por imagem , Masculino , Feminino , Adulto , Morte Súbita Inesperada na Epilepsia/patologia , Pessoa de Meia-Idade , Fatores de Risco , Adulto Jovem , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas tau/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , AdolescenteRESUMO
Nanoparticles (NPs) modified with targeting ligands have often shown great potential in targeted drug delivery for tumor therapy. However, the clearance of NPs by the monocyte-phagocyte system (MPS) and the relatively low cellular uptake by tumor cells have significantly limited the antitumor efficacy of a variety of nanomedicines. Tumor microenvironment-mediated multidrug resistance also reduces the antitumor efficacy of internalized nanomedicines. Herein, we developed an innovative nanomedicine for combined chemo-photodynamic therapy of melanoma through targeted drug delivery and significantly improved the cellular uptake of the nanomedicine through the charge-reversal phenomenon. An amphiphilic platinum (IV)-polyethylenimine-chlorin e6 (Pt(IV)-PEI-Ce6) polymer was designed, prepared, and self-assembled into NPs (PPC) in an aqueous solution, and these NPs were subsequently coated with hyaluronic acid (HA) to afford PPC@HA. The surface-coated HA provided PPC with a negatively charged surface potential to reduce the clearance by the MPS during systemic circulation and enhanced the targeted delivery of PPC to CD44-overexpressing melanoma cells. Upon accumulation in the tumor site, hyaluronidase overexpressed in the tumor induced HA degradation to release the positively charged PPC, resulting in an increased internalization of PPC into tumor cells. Bioactive Pt(II) was released in response to high glutathione level in the tumor cells for effective tumor chemotherapy. Under 650 nm laser irradiation, Ce6 produced reactive oxygen species (ROS), thus driving photodynamic therapy. Finally, PPC@HA exhibited combined photodynamic-chemotherapeutic antitumor efficacy against the melanoma cells in mice. STATEMENT OF SIGNIFICANCE: Tumors are one of the greatest threats to human health, and chemotherapy has been one of the most common therapeutic modalities for treating tumors; however, many challenges related to chemotherapy remain, such as low delivery efficiency, side effects, and unsatisfactory therapeutic efficacy. Nanomedicines modified with targeting ligands have often shown great potential in improving targeted drug delivery for tumor therapy; however, the clearance of nanomaterials by the monocyte-phagocyte system and the relatively low cellular uptake by tumor cells have significantly limited the antitumor efficacy of a variety of nanomedicines. Herein, we developed a novel charge-reversal-based, hyaluronic acid-coated, Pt(IV) prodrug and chlorin e6-based nanomedicine to improve systemic circulation and targeted accumulation of the nanomedicine in the tumor tissue and to enhance its intracellular uptake. This nanomedicine may provide a potential new platform to improve the drug content inside tumor cells and to effectively inhibit tumor growth through combined chemotherapy and photodynamic therapy.
Assuntos
Melanoma , Nanopartículas , Fotoquimioterapia , Porfirinas , Animais , Linhagem Celular Tumoral , Ácido Hialurônico/farmacologia , Ligantes , Melanoma/tratamento farmacológico , Camundongos , Nanomedicina , Nanopartículas/uso terapêutico , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Porfirinas/farmacologia , Microambiente TumoralRESUMO
Photodynamic therapy (PDT), where a photosensitizer (under light irradiation) converts molecular oxygen to singlet oxygen to elicit programmed cell death, is a promising cancer treatment modality with a high temporal and spatial resolution. However, only limited cancer treatment efficacy has been achieved in clinical PDT due to the hypoxic conditions of solid tumor microenvironment that limits the generation of singlet oxygen, and PDT process often leads to even more hypoxic microenvironment due to the consumption of oxygens during therapy. Herein, we designed novel supramolecular micelles to co-deliver photosensitizer and hypoxia-responsive prodrug to improve the overall therapeutic efficacy. The supramolecular micelles (CPC) were derived from a polyethylene glycol (PEG) system dually tagged with hydrophilic cucurbit[7]uril (CB[7]) and hydrophobic Chlorin e6 (Ce6), respectively on each end, for synergistic antitumor therapy via PDT of Ce6 and chemotherapy of a hypoxia-responsive prodrug, banoxantrone (AQ4N), loaded into the cavity of CB[7]. In addition, CPC was further modularly functionalized by folate (FA) via strong host-guest interaction between folate-amantadine (FA-ADA) and CB[7] to produce a novel nanoplatform, AQ4N@CPC-FA, for targeted delivery. AQ4N@CPC-FA exhibited enhanced cellular uptake, negligible cytotoxicity and good biocompatibility, and improved intracellular reactive oxygen species (ROS) generation efficiency. More importantly, in vivo evaluation of AQ4N@CPC-FA revealed a synergistic antitumor efficacy between PDT of Ce6 and hypoxia-activated chemotherapy of AQ4N (that can be converted to chemotherapeutic AQ4 for tumor chemotherapy in response to the strengthened hypoxic tumor microenvironment during PDT treatment). This study not only provides a new nanoplatform for synergistic photodynamic-chemotherapeutic treatment, but also offers important new insights to design and development of multifunctional supramolecular drug delivery system. STATEMENT OF SIGNIFICANCE: Photodynamic therapy (PDT) has exhibited a variety of advantages for cancer phototherapy as compared to traditional chemotherapy. However, the unsatisfactory therapeutic efficacy by PDT alone as a result of the enhanced tumor hypoxia during PDT has limited its clinical application. Herein, we designed multifunctional supramolecular micelles to co-deliver photosensitizer and hypoxia-responsive prodrug to improve the overall therapeutic efficacy. The supramolecular micelles are biocompatible and possess strong red absorption, controlled drug release profile, and ultimately enhanced therapeutic outcome via PDT-chemotherapy. This study not only provides a new nanoplatform for synergistic photodynamic-chemotherapeutic treatment of cancer, but also offers important new insights to design and development of multifunctional supramolecular drug delivery tool for multi-modality cancer therapy.